A. 二甲基甲酰胺热值
二甲基甲酰胺(DMF)是一种透明液体,能和水及大部分有机溶剂互溶。它是化学反应的常用溶剂。纯二甲基甲酰胺是有特殊臭味,工业级或变质的二甲基甲酰胺则有鱼腥味,因其含有二甲基胺的不纯物。名称来源是由于它是甲酰胺(甲酸的酰胺)的二甲基取代物,而两个甲基都位于N(氮)原子上。二甲基甲酰胺是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机理的进行。
B. 二甲基甲酰胺的事故案例
据香港《大公报》报道:广州先艺制衣厂于1999年初发生两起由布料中所含的化学物二甲基甲酰胺导致中毒的事件。其毒源来自浙江的一批布料。广州海珠区正采措施堵截有毒布料。先艺制衣厂发生六十一人集体中毒事件后,广东省中毒急救中心从多名重症中毒者的血液和尿中查出二甲基甲酰胺的代谢产物,由此判断为二甲基甲酰胺急性中毒,并对十多位症状较重的患者进行对症治疗。据厂方反映,布料一打开,工人们就闻到一股刺鼻的异味。当于下午四时开工到晚上十二时,开始有多人出现头痛、恶心等症状。经查,这十六名员工均为二甲基甲酰胺中毒。
据悉,病例众多、症状明显的二甲基甲酰胺中毒,在广东省尚属首次。有关人士认为,有毒布料在过去亦是较为罕见,可在广州却连续发现,原因是时下有的厂家用二甲基甲酰胺进行布料的表面处理,按生产工艺,那些处理过的布料应有烘干的工序,使布料上的二甲基甲酰胺挥发。不过,有些厂家为了省钱而省去了该道工序。
参考文献
[1]Smyth HF,et al. The inhalation toxicity of dimethylformamide. J Ind Hyg 1948; 30:63.
[2]Claytan JW,et al. Am Ind Hyg Assoc J 1983; 24:144.
[3]庞玉太,等. 急性二甲基甲酰胺中毒2例报告.劳动卫生与环境医学 1980; 315:124.
[4]化学事故技术援助数据系统
C. 二甲基甲酰胺(DMF)主要用在什么行业的
二甲基甲酰胺是优良的溶剂和有机合成原料,主要用作萃取乙炔和制造聚丙烯腈纤维的溶剂,亦用于有机合成、染料、制药、石油提炼和树脂等工业,也是医药生产的重要原料。
二甲基甲酰胺(DMF)作为重要的化工原料以及性能优良的溶剂,主要应用于聚氨酯、腈纶、医药、农药、染料、电子等行业。在聚氨酯行业中作为洗涤固化剂,主要用于湿法合成革生产;在医药行业中作为合成药物中间体,广泛用于制取强力霉素、可的松、磺胺类药品的生产;在腈纶行业中作为溶剂,主要用于腈纶的干法纺丝生产;在农药行业中用于合成高效低毒农药杀虫剂;在染料行业作为染料溶剂;在电子行业作为镀锡零部件的淬火及电路板的清洗等;其它行业包括危险气体的载体、药品结晶用溶剂、粘合剂等。
二甲基甲酰胺(DMF)是一种沸点高、凝固点低、化学和热稳定性好的优良有机溶剂。例如,采用以DMF为溶剂的腈纶干法纺丝工艺生产出的腈纶具有疏水性好、覆盖力强、质地柔软、手感强等特点。在湿法聚酯合成革生产中,DMF溶液中,可用于涂布各种延伸性或丝基质材料。在染料中作溶剂,用于合成纤维染色,可提高匀染性等。
由于DMF较强的溶解能力,使之在胶片及纤维生产中特别有用。另外,它在涂料、印刷油墨及粘合剂配方中也可用作作助溶剂。例如,采用以DMF为溶剂的腈纶干法纺丝工艺生产也的腈纶具有疏水性好、覆盖力强、质地柔软、手感强等特点。在湿法聚酯合成革生产中,DMF可作为聚氨酯树脂的洗涤固化剂。而用于皮革染色时,可使皮革色度均匀,不褪色。又如,将某些聚酰胺加入DMF溶液中,用于合成纤维染色,可提高匀染性等。
此外,DMF还可用作载体的溶剂,如以DMF与BF3(三氟化硼)用途形成一种聚合晶体,使BF3由气体变成固体而易于运输。
用于分离过程作为一种选择性溶剂,DMF可用于各种烃类和无机气体的选择性吸收。如使用DMF洗涤乙烯来去除其中的乙炔,从而将乙烯提纯。DMF用于C4和C5馏分的萃取蒸馏时,当使用沸点介于DMF和待分离烃沸点之间的烃类稀释剂时,萃取蒸馏塔和洗涤塔再沸器温度均可降低。DMF也可用于酯和醚的分离,即将DMF与其客观存在高沸点溶剂并用,可将乙酸乙酯从乙醇/水的二元或三元共沸物中分离出来。
用于选择性溶剂萃取作为选择性溶剂,DMF可用于石油加工等许多领域的萃取工艺。例如:在润滑油原料精制过程中,DMF能有效地将非链烷烃从链烷烃中萃取分离出去;在间苯二甲本和对苯二甲酸等性质相似、很难分离的多元羧酸物系中,用DMF溶剂萃取或分步重结晶,都可较容易地使之分离开来;DMF还可将三聚氰酸从含有尿素、缩二脲和三聚氰酸的酰胺粗品中萃取出来 。另外,DMF还可用于从石油馏分中萃取分离酸类,从铝皂保分离脂肪酸等。
另外,DMF作为化学合成的反应介质,作为结晶溶剂用于药品的精制及用于镀锡零部件的淬火等方面也有机当的用途。
D. “二甲基甲酰胺”怎样可以消解
这个,首先看它的官能团
1、分子式为分子式HCON(CH3)2,所以为酰胺。酰胺是一种很弱的碱,它可与强酸形成加合物,如CH3CONH2·HCl,很不稳定,遇水即完全水解。酰胺也可形成金属盐,多数金属盐遇水即全部水解,但汞盐(CH3CONH)2Hg则相当稳定。酰胺
乙氧酰胺苯甲酯
在强酸强碱存在下长时间加热,可水解成羧酸和氨(或胺)。酰胺在脱水剂五氧化二磷存在下小心加热,即转变成腈。酰胺经催化氢化或与氢化铝锂反应,可还原成胺。酰胺还可与次卤酸盐发生反应,生成少一个碳原子的一级胺。
酰胺可以通过羧酸铵盐的部分失水,或从酰卤、酸酐、酯的氨解来制取;腈也可部分水解,停止在酰胺阶段。
低分子液态酰胺如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺是优良的非质子极性溶剂,也可用作增塑剂、润滑油添加剂和有机合成试剂。长链脂肪酸酰胺,如硬脂酸酰胺可作纤维织物的防水剂,芥酸酰胺是聚乙烯、聚丙烯挤塑时的润滑剂。N,N-二羟乙基长链脂肪酸酰胺是非离子型表面活性剂,也是氯乙烯-乙酸乙烯酯共聚物的增塑剂。N-磺烷基取代的长链脂肪酸酰胺是合成纤维的柔软剂。二元羧酸与二元胺缩合聚合形成的聚酰胺是具有优异性能的合成纤维。
肉桂酰胺
酸碱性:酰胺一般是近中性的化合物,但在一定条件下可表现出弱酸或弱碱性。酰胺是氨或胺的酰基衍生物,分子中有氨基或烃氨基,但其碱性比氨或胺要弱得多。酰胺碱性很弱,是由于分子中氨基氮上的未共用电子对与羰基的π电子形成共轭体系,使氮上的电子云密度降低,因而接受质子的能力减弱。这时C-N键出现一定程度的双键性。 然而,氮上的电子云密度降低,却使N-H键的极性增加,从而表现出微弱的酸性。如果氨分子中有两个氢原子被一个二元酸的酰基取代,则生成环状的亚氨基化合物(酰亚胺)。由于两个羰基的吸电子作用,使亚氨基的N-H键极性明显增加,氮上的氢原子较易变为质子,而呈弱酸性。例如:
水解:酰胺在通常情况下较难水解。在酸或碱的存在下加热时,则可加速反应,但比羧酸酯的水解慢得多。 N-取代酰胺同样可以进行水解,生成羧酸和胺。
与亚硝酸反应:酰胺与亚硝酸作用生成相应的羧酸,并放出氮气。
特别的,N,N-二甲基甲酰胺(DMF)是一种透明液体,能和水及大部分有机溶剂互溶。它是化学反应的常用溶剂。纯二甲基甲酰胺是没有气味的,但工业级或变质的二甲基甲酰胺则有鱼腥味,因其含有二甲基胺的不纯物。名称来源是由于它是甲酰胺(甲酸的酰胺)的二甲基取代物,而二个甲基都位于N(氮)原子上。二甲基甲酰胺是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机构的进行。 二甲基甲酰胺是利用蚁酸和二甲基胺制造的。二甲基甲酰胺在强碱如氢氧化钠或强酸如盐酸或硫酸的存在下是不稳定的(尤其在高温下),并水解为蚁酸与二甲基胺。
2、由于有羰基,所以一定条件下可以发生以下反应
缩合
与α-氢羟醛
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
卤代
烃基上的反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
加成
与氢氰酸
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇。
与格氏试剂
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
与醇
(3)与醇的加成
常温下羰基可与羟基发生可逆反应,生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护
与α-氢羟醛
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
卤代
烃基上的反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
加成
与氢氰酸
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇。
与格氏试剂
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
与醇
(3)与醇的加成
常温下羰基可逆反应,与羟基发生可生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护
然后知道了这些反应,自己找到适合自己的试剂和方法就可以去除了。
有什么不会的再问吧
E. 500ml DMF(二甲基甲酰胺)是多少摩尔
二甲基甲酰胺分子式 C3H7NO分子量 73.09得计算500ml中含有的二甲基甲酰胺的质量,除以73.09得到的就是摩尔数。
F. 二甲基甲酰胺多少钱
二甲基甲酰胺(DMF)是一种沸点高、凝固点低、化学和热稳定性好的优良有机大的使用方面,你做销售的应该知道怎么做了 你是卖小包装还是大包装?你找
G. 二甲基甲酰胺与甲基甲酰胺有何区别我本来需要甲基甲酰胺卖家给我发过来的是二甲基甲酰胺,我想知道能不
肯定是不一样的!
二甲基甲酰胺:HCON(CH3)2, 是有机反应中常用的极性溶剂,也有许多工业用途(网络搜)。它是甲酸与二甲胺反应的产物。
甲基甲酰胺:HCONHCH3, 比起DMF,酰胺的N上少了一个甲基,除做溶剂外, N上的H 可以被取代, 可以发生许多反应(详见网络搜)
H. 二甲基甲酰胺对人体有什么危害
二甲基甲酰胺(DMF)对人体的危害
刺激症状:DMF蒸气可引起眼、上呼吸道轻、中度刺激症状。
皮肤:污染皮肤可致轻、重不等的灼伤,皮肤起皱,肤色发白,伴有灼痛感,严重者可使皮肤胀肿,剧烈灼痛。
眼:污染眼引起灼痛、流泪、结膜充血; 严重者可引起角膜坏死。
胃肠道症状:患者常有食欲不振、恶心、呕吐、腹部不适及便秘等,少数病例有中上腹痛。
肝脏:急性中毒时肝脏损害常较为突出,患者有明显乏力,右上腹胀痛,不适,出现黄疸,肝脏逐渐肿大,有压痛,常规肝功能检查示异常,其中血清转氨酶升高较明显。病变一般不严重,经治疗可逐步减轻,数周内病情可完全恢复。
严重急性中毒:表现为重症中毒性肝病,职业性中毒为少见,接触高浓度,尤其是皮肤污染严重,未及时彻底洗清者,应警惕发生严重中毒。
生活性中毒:曾有原患慢性溃疡性结肠炎患者,以DMF灌肠,作为治疗药物而引起肝病,病情呈进行性加剧,类似亚急性肝坏死型肝炎,2周内出现肝昏迷,预后凶险。
特殊危险者:原患有各种原因的肝脏疾病者,对DMF较为敏感。
二甲基甲酰胺(DMF)是一种透明液体,能和水及大部分有机溶剂互溶。它是化学反应的常用溶剂。纯二甲基甲酰胺是没有气味的,但工业级或变质的二甲基甲酰胺则有鱼腥味,因其含有二甲基胺的不纯物。名称来源是由于它是甲酰胺(甲酸的酰胺)的二甲基取代物,而两个甲基都位于N(氮)原子上。二甲基甲酰胺是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机理的进行。
I. 二甲基甲酰胺对身体有害吗
二甲基甲酰胺(DMF)是一种透明液体,能和水以及大部分有机溶剂互溶,因此在化学反应中作为常用溶剂使用,一般情况下化学反应溶剂对人的身体会产生一定程度上的危害,同样二甲基甲酰胺也对人体造成伤害。
二甲基甲酰胺可以通过呼吸道、皮肤和胃肠道吸收进入到人体内,对皮肤、黏膜有刺激性,进入人体后可对***系统和肾、胃等重要脏器造成损伤。
二甲基甲酰胺急性中毒的主要表现是眼和上呼吸道的刺激症状,如流泪、咳嗽,有些还会出现***、头晕、嗜睡、恶心、上腹部出现剧烈疼痛的症状,严重时还会出现消化道出血的情况。并且在中毒数天后,二甲基甲酰胺中毒者会出现肝肿大、肝区压痛、黄疸、肝功能异常等肝损害症状和肾功能障碍,可能还会出现一过性心脏损伤。皮肤被二甲基甲酰胺污染后可出现皮疹、水肿、水疱、破溃、脱屑等,并会出现麻木、瘙痒和灼痛症状。
二甲基甲酰胺对人体的危害如此之大,在接触和储存时一定要注意做好相应的防护措施。