1. 个人如何做量化交易
没 有 想 要去开发 复杂 的 量 化 系 统, 你 可 以使用 县 城的 量化 交 易 系 统 , 例如R i c equ ant 量化 交 易 平 台 , 而 自 己全 心 关 注 策略 的开发。 你 也 可以 在社区 里 学习到有 意 义 的 策略 , 他 山 之 石可以攻 玉。
2. 量化交易平台的挑战都有哪些
量化交易平台的功能一般包含三大块:研究、模拟、实盘。转化到技术层面为:数据、回测、实盘、安全等等。
基于国内市场,我们遇到的挑战如下:
1:数据
数据包含两类,一类是行情数据,一类是财务、基本面、舆情、研报等其他数据。行情数据:
目前市面上分钟级的数据比较精准,可以用于中低频的交易回测;历史、实盘TICK级的Level-1、Level-2数据需要自己找渠道去获得,较容易找到的渠道很容易出现漏数据、不精确等情况,需要工程师专门结合了多家数据源进行核对修复。
2:回测
回测最难的在于如何确定成交量,同时要考虑复权、停牌、ST*等问题,这里面有很多细节
3:安全
安全在交易平台的开发中是重中之重,如何保证策略的安全性,不被外部、内部人员所窃取,分为2部分。
一部分是WEB安全,一部分是策略的编译安全。
因为量化交易平台是用户可编程的,我们京东量化选用的是PYTHON语言,因为有强大的科学计算库和高性能,导致用户可以调用很多系统级API,在这上面我们下了很大的功夫来保证用户的策略安全,做到理论级的策略隔离。
只能大概讲一下,这里面每一个部分都可以延伸出来成为一个话题。
3. 量化交易是什么
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
应答时间:2020-12-11,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
4. 量化交易都有哪些主要的策略模型
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。 量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
5. 学习量化交易都有哪些书可以参考
提两本相关的学术著作。一本是2011年的论文集 Econophysics of Order-driven Markets,收录了一系列关于盘口和高频数据建模的论文。另一本是2013年的 High-Frequency Trading book,包含一些策略研究和机器学习方面的应用。这两本一定程度上可以反应学界目前对这个领域的研究现状。
6. 为什么量化交易总是赚不到钱
量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等
图片来源:凯纳量化投资
“你炒期货吗?”
“不炒,我赚的是血汗钱,您赚的是心跳钱。”
这是一位期货门外汉跟一位期货投资者的对话。的确,期货因其高风险高收益的特征,参与者很多都是心惊肉跳的。不过,近年来引入国内的量化交易,正逐渐改变这一情况。
上周六,东莞本土唯一期货公司——华联期货联合量化交易的相关投资机构,在东莞举办了一场题为“量化交易,打开财富之门”的量化交易策略交流会。与一般的投资报告会人流稀少相反,该交流会可谓人满为患,原定的百余人参与的会议室,最终挤进了近200名投资者,以至酒店空调开到最大仍显十足燥热。
近几年量化交易发展迅猛
对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了1.4倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。目前,绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。
事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的收益。
“传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
据华联期货介绍,量化投资目前主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。
量化投资东莞“试水”告捷
在东莞本土,也有多家机构在试水量化投资,包括证券公司、期货公司和私募投资公司,从目前情况来看,可谓“试水”告捷。
如华联期货去年推出了“金莞家”程序化系列产品,其中“智赢股指组合策略”是其首个专项个性化交易模型组合,该模型组合通过对两年多来股指期货运行特点进行量化分析,形成了八套独有的程序化交易模型,模型运行以来,年化收益率最高的逾60%,最低的也有26%,但最大回撤不足10%。
国信证券东莞营业部则成立专门的“量化投资中心”,该营业部去年就有20多个不同时期参与股指期货程序化交易的客户,表现最好的账户年化收益率近40%,所有账户全部战胜大盘。
发行了国内首只多重策略对冲基金的东莞莞香资本投资公司,更是量化投资的“拥趸”,该公司目前的专户产品全部采取量化投资方式,且收益不错。如其旗下某专户理财产品,2012年6月19日-2013年5月19日的净值增长达41%。
“量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉记者,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的收益,但2008年大熊市也有15%左右的收益。”
“资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求最高收益,不过度拟合行情;同时,坚持正确的交易理念和交易方法,严格执行和坚持不懈是持续盈利的前提。”
量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
投资辞典
何谓量化交易
量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
7. 什么是量化交易,未来前景如何知道的讲讲。
国外量化交易已经发展了40年左右,量化交易程序换交易占比60%,量化基金规模达到30个亿美元,而国内量化交易起步较晚第一只量化基金在2004年左右,至今量化交易规模不过2万亿RMB,国内现在的量化人才也很缺失,随着过来一批量化交易的海龟回来从事量化交易会一定程度带动行业的发展,但是仍需一定时间,加上国内量化交易政策还不够明朗,整体来说量化交易在国内还是一年蓝海,但是路途并非坦途。
8. 量化交易该如何入门
5000万差不多吧。没5000万不要谈量化交易,手续费能不能赚回去都是问题