『壹』 如何评价一个量化交易策略
个人感觉:
分两种
第一种,安全+盈利少一些也可以。
1。回撤少(15%内),最好10%以内 没心里压力。
2。盈利稳定,年化可以到10%以上。熊市可以低(大于3%?),但牛市可以补足,但熊市不能低于比如一年定期。否则没有执行下去的勇气。
第二种,非常高风险,不过终级盈利一定要非常非常非常非常夸张。
1。回撤可以95%。
2。盈利在某个顶点可以达到比如500倍?1000倍?类似彩票的玩法。拿到500倍,止盈从头再来一次。
以上个人感觉,没有系统学习过。欢迎讨论。
『贰』 量化交易员是策略研发要求高还是交易要求高
在整个量化交易策略的研发流程当中,买和卖是最为基本的量化交易策略组成部分,而这个部分的设定主要与收益情况相关。这里所说的相关,具体分为两种不同的情形,一种是总体的关联性,即基于买点、卖点的选择,买卖策略应该得到一个正的整体收益。另一种则来自于对交易资产未来收益的判断、或者说预测,即判断交易资产的未来收益为正时,就买入资产;判断交易资产的未来收益为负时,则卖出或卖空资产。实际操作中,这两种关联关系的情况可能更为复杂一些。有的时候,买和卖的具体操作也可能受到风险方面设置的影响,例如为了限制单次交易的最大损失而采取止损之类的操作时,用于清仓的买卖设置就会相应的变动,这也是作者将风险和买卖用虚线相连的原因。不过在大部分情况下,买卖这一最为基本的组成部分还是与收益的关系最大,研究者也应该在研发这一个组成部分时,着重考虑收益情况的具体影响。
对量化交易策略风险的控制可能会影响到量化交易策略中的买卖设置,但是在更普遍的情况下,风险这一因素主要影响的是交易仓位的设置。当然,前提条件还是需要买卖策略的总体收益为正,在这样的条件下再结合仓位的设置,才能够在合适的风险水平下取得达到要求的收益。通过对交易资产具体仓位的调整,交易者可以比较直接的控制单次交易以及整个交易策略的风险水平。例如在满仓交易的情况下,定量的判断了当前交易的风险之后,觉得风险过大无法承受,那么最为直接的处理方法就是在满仓的基础上相应的降低仓位的大小。在仓位降低之后,对于整体资金而言风险也就随之降低了。由于仓位本身具有量化、直观的特性,因此当交易者希望将风险处理到一个特定的水平时,调整仓位是一个比较方便的手段。
需要说明的是,前面已经提到了买和卖是量化交易策略最为基本的组成部分,实际上仓位的设定是根据买卖决策和风险两个因素共同形成的,不建立在买卖之上的仓位选择是空洞没有意义的。此外还有一个更为极端的情况,仓位的正确设定有助于进一步优化策略的整体收益,之后要介绍的凯利公式的意义正在于此。在图1中由买卖到仓位的箭头,实际上可以看作是收益、买卖这一个整体部分指向仓位的箭头。不过在实际使用中,凯利公式所导出的仓位设定往往过于偏激,超过正常风险控制下的最高仓位值,因此仓位仍然与风险的关系更为紧密。
在图1这个较为松散的量化交易策略研发流程中,交易成本是和买卖以及仓位具有同等地位的组成部分。在实际操作中,就是首先基于对收益和风险的判断得出合适的买卖和仓位选择,然后在买卖和仓位共同组成的量化交易策略当中考虑交易成本,也就是在建立仓位和退出仓位等操作中扣除所需要承担的交易成本。随后再次判断该量化交易策略所代表的收益和风险情况,只有这两个因素仍然在接受范围之内,才能确认这是一个可行的量化交易策略。虽然最后用来执行的组成部分只有买卖和仓位,但是交易成本作为对量化交易策略的一个实际化修正,也是策略研发流程中一个不可或缺的组成部分。
上面提到的对量化交易策略收益和风险情况的判断,实际上是一个综合性的评价问题。一个最为重要的参考依据应该是策略在整个交易过程中的净值走势,通过对策略净值走势的分析,就可以建立起该量化交易策略运行情况的全面判断。但是净值走势本身由于细节过多,因此无法简单的用来进行策略之间的横向对比。这时就需要精炼净值走势中所包含的信息,选取合适的部分形成量化的评价指标,从而进行量化交易策略的进一步判定。就作者看来,评判一个策略的标准中最重要的仍然是策略在整个交易过程下的收益情况,一个负收益的量化交易策略根本无需考虑其风险即可排除。而当收益为正时,再结合风险的度量进行具体的取舍,就可以直观的给出量化交易策略是否合格的评判标准了。作者心目中最重要的风险指标是策略净值的回撤水平,在后面的案例分析中也会重点查看回撤的结果。
于此同时,一些量化交易策略在进行收益和风险情况的判断时,仅仅针对策略自身的净值走势进行研究是不够的,给出一个合理的基准来进行对比往往是更为有效的判别方法。例如后面的案例中会涉及到的量化选股策略,当交易选择仅限为对具体的股票进行持仓,而不考虑空仓或者卖空时,选取一个特定的基准进行对比就会是一个更为有效的判别方法。这主要是由于量化选股策略的仓位始终为多头,因此不论如何配置,策略所持仓位都含有资本资产定价模型中所提到的市场成分。而选股策略本身的意义在于选择更好的股票、不在于获取市场收益,因此将市场走势作为对比、或者在策略收益中剔除掉市场成分就是一个更合理的做法。
上述所有的操作,都需要建立在对历史数据的分析之上,在量化交易领域当中一般称之为回溯测试,或者简称回测。所谓回溯,也就是将交易的过程在历史数据上复现一遍,这里面包含了一个假设,即历史数据在量化交易策略中展现出的样本特征在未来的交易中依然存在,否则回溯测试就失去了意义。关于这一假设的分析其实在诸多技术分析著作中均有涉及,一般被称为“历史会重演”,这里不再继续展开。不同于传统技术分析的是,量化交易策略的研发过程更加深入具体,在涉及到策略的参数设定、模型设置等具体问题时,需要采用数量化的方法、也就是最优化等技术手段进行解决。例如如何设置买点和卖点可以使得相应的总体收益最大等等,都是很典型的最优化数学问题,那么找到合适的最优化技术和算法并加以应用,就能够确定量化交易策略的最终形式,用以进行实际交易。
图1中所展示的是一个较为松散的一般性框架,用来总领性的说明量化交易策略的基本研发流程。在具体的策略研发过程中,这个框架经常会因为具体研发设置和策略设置的不同而产生变化。例如当量化交易策略的主要作用不是在时间轴上选择具体的买卖时点,而是在同一个时间点上对多个资产进行选择和配置时,图1中的一些说明就显得有些含混不清。量化选股策略就是这一类策略中最为常见的形式,因此这里在整体框架不变动的情况下,针对图1进行了文字上的调整,用以说明量化选股策略的运行框架与研发流程。当然,使用选股策略的框架体系来处理多个资产甚至多个策略的挑选、配置也是可以的,在不复杂的情况下只需要稍作联想即可。
买卖和仓位虽然是更为通用的说法,但是更适合于描述择时策略,放在选股策略的研发框架中会显得比较突兀,因此图2将买卖换成了选股,仓位则换成了配比,这样更容易让读者领会该研发流程的含义。实际上,对于每一期的选股而言,如果选择了原先没有仓位的股票,那么对应的操作就是买入该股票,如果已经建仓的股票没有被选入这一期的股票池,那么对应的操作就是卖出该股票。而配比则是在买卖的基础上,通过仓位大小的变化来实现具体配置。因此,选股和配比实际上可以算作是买卖和仓位选择的特殊情况,只是这种说法更为贴合量化选股策略本身。
略有不同的,是风险在量化选股策略研发流程中的具体含义。由于选股策略的仓位操作涉及到多个股票之间的配比问题,因此这里的风险不仅包括单支股票的风险,也涉及到多支股票之间的风险程度,后一种风险一般采用股票收益之间的相关性来进行描述。例如在一般性的最优投资组合理论当中,经常使用协方差矩阵来刻画整个资产组合的风险水平。虽然从实际情况来看,相关性这一度量方式与风险的直观感受之间有一定的差距,但是在多资产环境下,一般都将资产间的相关性视为风险的来源之一,这是一个偏学术的、约定俗成的做法。
上面的例子是针对选股策略进行的文字上的变动,实际上量化交易策略研发流程的变化更多来自于各个研发组成部分不同的结合方式。而不同的结合方式,对应的是策略研发过程中不同的目标和需求。例如图1所介绍的松散的研发流程,是在确定好买卖行为和仓位设定之后,再针对实际交易中所产生的交易成本进行二次测试。这样的做法虽然简便易行,但是忽视了交易成本本身对于收益的影响,以及更进一步对于买点和卖点的影响。因此,在确定买卖设置的步骤中就考虑交易成本的影响,应该是一个更贴近于实际的研究框架。图3给出了相应的流程刻画,如图所示,在判断收益因素时,同时考虑交易成本对于收益的影响,从而优化出更为实际的买卖设置。再根据相应的风险控制,结合买卖点的选择,得出最后的仓位设置。在确定了买卖和仓位这两个部分之后,就获得了一个完整的量化交易策略。
图4给出了一个更紧凑、更贴合实际操作的量化交易策略研发流程。在该流程中,买卖和仓位的设置是同时作为参数进行优化的,优化的目标函数也进行了唯一化,即量化交易策略的风险调整后收益。而在确定需要优化的目标函数时,交易成本也如同上一个研发流程一样同时被考虑进去,从而保证买卖和仓位优化结果的准确性。毫无疑问,相较于上面所涉及到的研发流程、特别是图1中较为松散的研发流程,该量化交易策略研发流程的各个组成部分更为紧密,因此在优化过程中所产生的与实际操作的偏离也就越小,买卖和仓位设置的准确度也就更高。但是在实际工作中,如果想参照这一流程进行研发,那么就需要比较强的计算能力,数据量的大小也要达到一定要求,同时优化方法和目标函数的设定要能够同时覆盖买卖和仓位的所有参数,因此往往也只有极为简单的策略思路可以采用这样的流程框架进行研发。
在实际的量化交易策略相关工作中,研发只是整个工作流程的一部分,还有两个组成部分需要着重强调。基于此,图5在图1所示的研发流程的基础上给出了一个更为完整的工作流程。如图所示,需要增加的部分包括处于研发过程之前的数据准备工作以及处于研发过程之后的策略执行工作。这两项工作与前面所论述的研发流程具有很强的逻辑关联性与内在依赖性,三者结合起来形成的一个整体,基本上可以涵盖量化交易策略具体工作的绝大部分内容。
首先论述数据准备的工作,循着图5中的箭头可以看到,在量化交易策略的整体工作中,既要为研发过程准备相应的研究数据,也要为策略执行准备相应的实时数据。在研究数据方面,由于寻找合适的量化交易策略需要不断重复研发流程,因此对于数据的要求更偏重于准确性和覆盖能力。同时,对数据的清洗和转换也是一项重点工作,在大部分的数据科学研究、包括量化交易策略的研发当中,数据特征的合理抽取对于整体效果提升的重要性有时甚至要高于精巧的模型,当然很多时候数据的转换和模型的构造是相互融合的,针对具体情况应当采取具体的分析和处理。而在策略执行数据方面,则更应该关注于数据获取的及时性。至于数据的清洗和变换,只需要完全复制研发得到的量化交易策略下的数据准备工作即可。另外,为了保证数据的及时性,最终进行的数据清洗工作对时间消耗存在一定的要求。
然后讨论策略执行的工作。策略执行,是在量化交易策略研发完成之后,最终产出实际效能的组成部分。执行时应该遵循尽量贴近研发完成的量化交易策略的原则,与量化交易策略所确定的买卖、仓位等设置尽可能的保持一致,这样才能最真实的反映出前面量化交易策略的研发结果。同时,策略执行的结果也可以用来反向支持具体的研发流程,通过对策略执行所得到的收益、风险情况的判断,实时的重新进行研发,对量化交易策略进行修改,从而使得策略能够及时的得到现实的反馈,增强自身的稳健程度。值得一提的是,后面将要介绍的推进分析是一种模拟策略执行的回溯测试技术,读者可以在运行推进分析时有限度的了解到量化交易策略实际执行时的种种状态。
『叁』 量化交易主要有哪些好的策略
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库mysql,asp网络编程语言,以及可以设置成网络服务器的旗舰版win7操作系统。
『肆』 量化交易是什么量化交易有哪些优缺点
近些日子,一则“量化交易是什么?”的问题,引发了广大网友们的热议,在网上闹的沸沸扬扬。那么,量化交易是什么呢?量化交易也可以叫自动化交易,就是使用数学模型来自动交易,摒弃了认为主观的判断。量化交易的优点是什么?量化交易的优点就是去除了认为的操作,不会受到情绪的影响,都是拿概率说话。量化交易的缺点是什么?量化交易的缺点是不懂得炒作热点,不会分析时事。那么具体的情况是什么呢?我来给大家分享一下我的看法。
一.量化交易是什么量化交易,也叫自动化交易。就是指利用数学的模型,制作出一套能够稳定盈利的方法,然后让计算机自动的进行买如何卖出的操作。量化交易模型越好,那么交易的盈利能力,以及稳定性则是越强。
以上就是我对于这个问题所发表的看法,纯属个人观点,仅供参考。大家有什么不同的看法都可以在评论区留言,大家一起讨论一下。大家看完,记得点赞,加关注哦。
『伍』 量化交易策略有哪些
01、海龟交易策略
海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。
02、阿尔法策略
阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。
在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。
03、多因子选股
多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。
04、双均线策略
双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。
双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效
05、行业轮动
行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。
06、跨品种套利
跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。
跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。
07、指数增强
增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。
08、网格交易
网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量.不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。
10、高频交易策略
高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。
『陆』 量化交易都有哪些主要的策略模型
随着量化交易的发展,单一技术指标的策略会面临失效的问题。所以现在的策略都是复合型的。
经典量化交易策略(包括价值投资、技术指标、配对轮动、机器学习等)、研究型文章等
『柒』 如何识别优秀的量化交易策略
最快的方式就是用模拟账号去模拟
看一下收益就知道策略好或者不好
『捌』 量化交易主要有什么经典的策略
您好
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
『玖』 量化投资策略的优势有哪些
量化投资策略的优势有哪些?
量化投资策略有如下五大方面的优势,主要包括纪律性、系统性、及时性、准确性、分散化等。
(1)纪律性:严格执行量化投资模型所给出的投资建议,而不是随着投资者情绪的变化而随意更改。纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差,行为金融理论在这方面有许多论述。
(2)系统性:量化投资的系统性特征主要包括多层次的量化模型、多角度的观察及海量数据的观察等等。多层次模型主要包括大类资产配置模型、行业选择模型、精选个股模型等等。多角度观察主要包括对宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度的分析。
(3)及时性:及时快速地跟踪市场变化,不断发现能够提供超额收益的新的统计模型,寻找新的交易机会。
(4)准确性:准确客观评价交易机会,克服主观情绪偏差,妥善运用套利的思想。量化投资正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。与定性投资经理不同,量化投资经理大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。
(5)分散化:在控制风险的条件下,充当准确实现分散化投资目标的工具。分散化也可以说量化投资是靠概率取胜。这表现为两个方面,一是量化投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用,这些历史规律都是有较大概率获胜的策略。二是依靠筛选出股票组合来取胜,而不是一个或几个股票取胜,从投资组合理念来看也是捕获大概率获胜的股票,而不是押宝到单个股票上。