1. 杠杆原理是什么
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
杠杆可以让“小力”做出“大力”能做的功。
任何机械所输出的能量,都不可能比输入它的能量还多,这是“能量守恒定律”的要求。因此,对于一个理想的机械,它的“能量输出”最多与“能量输入”是相等的,这个时候,机械所输出的功,等于输入它的功。
可以想象一个用杠杆来翘起物体的例子。在过程中,杠杆所输出的功,是“物体的重量”与“物体被抬起的高度”(或者说“输出距离”)的乘积。而输入杠杆的功,则是人所施加的“力”与“向下压的距离”(或者说“输入距离”)的乘积。
在理想的情况下,“输出的功”与“输入的功”相等,也就是“物体的重量”与“输出距离”的乘积,等于“力”与“输入距离”的乘积。这就意味着,在物体的重量一定的前提下,“力”的大小取决于“输入距离”与“输出距离”的比例。
2. 杠杆原理谁提出
杠杆原理的最早发现者, 一般认为是古希腊的阿基米德, 但事实并非如此,先秦的墨子, 本名墨翟, 才是最早的发现者;也就是说杠杆原理的最早发现者是中国人, 不是古希腊人
据说, 阿基米德在《论平面图形的平衡》一书中用公理的形式描述了杠杆原理, 但阿基米德生卒年为公元前287年—公元前212年, 相当于秦灭六国前后
墨子约出生在春秋末年(约公元前480年),一说公元前476年, 《墨子》的《墨经》中对杠杆原理有详细而精确的描述
《墨经》约完成于周安王14年 癸巳(公元前388年)。《墨经》,又称《墨辩》。是《墨子》的一部分
《墨经》比《论平面图形的平衡》要早一百多年
另外, 《墨子》也好, 《墨经》也好, 都传承有序, 是确凿的先秦历史文献, 但阿基米德的著作则来历不明, 最早发现于文艺复兴时期, 离阿基米德的时代, 相去约一千五百年, 其最早的版本是从阿拉伯文翻译成拉丁文的抄本, 连阿拉伯文的版本都没有, 更不要说古希腊文的版本了, 到底是不是阿基米德的著作? 甚至是不是古希腊的文献, 都以不可考
严格来说只能算传说而已, 就好比《黄帝内经》,说是黄帝与岐伯雷公等人的谈话记录,但现在大家都认为是后人的托名之作,真实作者已不可考
3. 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。内要使杠容杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
4. 杠杆原理及公式
杠杆的平衡来条件:动力×动源力臂=阻力×阻力臂。
公式:F1×L1=F2×L2变形式:F1:F2=L1:L2动力臂是阻力臂的几倍,那么动力就是阻力的几分之一。
杠杆静止不动或匀速转动都叫做杠杆平衡。
通过力的作用点沿力的方向的直线叫做力的作用线
从支点O到动力F1的作用线的垂直距离L1叫做动力臂
从支点O到阻力F2的作用线的垂直距离L2叫做阻力臂
杠杆平衡的条件(文字表达式):动力×动力臂=阻力×阻力臂
动力臂×动力=阻力臂×阻力,即L1×F1=L2×F2,由此可以演变为F1/F2=L1/L2杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关。
假如动力臂为阻力臂的n倍,则动力大小为阻力的1/n"大头沉"
动力臂越长越省力,阻力臂越长越费力.
省力杠杆费距离;费力杠杆省距离。
等臂杠杆既不省力,也不费力。可以用它来称量。在力学里,典型的杠杆(lever)是置放
5. 杠杆原理及公式
将杠杆原理看作以支点为中心的旋转运动,就比较容易理解了。动力点或专阻力点的移动距离属是由以支点为中心的圆的半径决定的。半径越长,这个点移动的距离就越长,因为这个点就得沿半径更长的圆移动了。
距离变化的同时,也伴随着力的增减。这是因为单纯的杠杆原理是通过以下公式成立的:作用于动力点的力×动力点移动的距离=作用于阻力点的力×阻力点移动的距离。(力×力作用的距离)在物理学中叫做“功”,即人做的功和物体被做的功是相等的(能量守恒定律)。
(5)杠杆原理粤语歌词扩展阅读
在杠杆原理中,我们把杠杆固定的旋转点称为“支点”。要想举起重物,就要把支点置于尽量靠近物体的地方。
假设人施加力的点(动力点)与支点之间的距离达到支点与使物体移动的点(阻力点)之间距离的5倍。那么,要想撬起地球仪,只需要用地球仪1/5重量的力按压木板即可。
剪刀、起子、镊子、筷子、钳子、杆秤......这些工具都用到了“杠杆原理”。利用杠杆原理,我们可以用很小的力量撬起很重的物体,也可以把短距离移动放大为长距离移动。正因如此,杠杆原理在生活中的应用十分广泛。
6. “杠杆原理”这一词是出自哪里一本书吗谁提出来的是哪本书
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”,这句话便是说杠杆原理。
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
希望能帮助到你
7. 杠杆潮汕话怎么读
杠杆潮汕话:
杠[gang3] 杠[gong3]
杆[guan1]
杠杆 gàng gǎn
力学中的简单机械。一杆上定有三点:加重物之端,称为「重点」;用力之端,称为「力点」;支持他物於其上之端,称为「支点」。如支点距重点近,距力点远时,则抬起重物时所用的力较省。此原理在日常生活中的运用,有剪刀、铡刀、镊子等。
8. 杠杆定律 原理以及公式、用法
杠杆比率=正股现货价÷(认股证价格x换股比率) 杠杆又分称费力杠专杆、省力杠杆和等臂杠属杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。来源于《论平面图形的平衡》。
9. 杠杆原理
杠杆是一种简单机械。
在力的作用下能绕着固定点转动的硬棒就是杠杆
(lever).
跷跷板、剪刀、扳子、撬棒等,都是杠杆。
滑轮是一种变形的杠杆,
且定滑轮是一种等臂杠杆,
动滑轮是一种动力臂是阻力臂的两倍
的杠杆
杠杆绕着转动的固定点叫做支点
使杠杆转动的力叫做动力
阻碍杠杆转动的力叫做阻力
当动力和阻力对杠杆的转动效果相互抵消时,
杠杆将处于平衡状态,
这种状态叫做杠杆平
衡
杠杆平衡时保持在水平位置静止或匀速转动。
通过力的作用点沿力的方向的直线叫做力的作用线
从支点
O
到动力
F1
的作用线的垂直距离
L1
叫做动力臂
从支点
O
到阻力
F2
的作用线的垂直距离
L2
叫做阻力臂
使用杠杆时,如果杠杆静止不动或绕支点匀速转动,那么杠杆就处于平衡状态。
动力臂
×
动力
=
阻力臂
×
阻力,即
L1F1=L2F2
,由此可以演变为
F2/F1=L1/L2
杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关。
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上
图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向
下杠杆是等臂杠杆;
第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点
在中间,动力臂小于阻,是费力杠杆。
费力杠杆例如:剪刀、
钉锤、
拔钉器
……
杠杆可能省力可能费力,也可能既不省力也不费
力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;还要看重点(阻
力点)和支点的距离:重点离支点越近则越省力,越远就越费力;如果重点、力点距离支点
一样远,如定滑轮和天平,就不省力也不费力,只是改变了用力的方向。
省力杠杆例如:开瓶器、榨汁器、
胡桃钳
……
这种杠力点一定比重点距离支点近,所以永
远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀
(刀刃比较长)
剪纸板时花剪较省力但是
费时;而洋裁剪则费力但是省时。
1.
剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大。用动力臂较长、阻力臂较短的剪刀。
2.
剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,
刀口要比较长。用动力臂较短、阻力臂较长的剪刀。
3.
剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为
了加快修剪速度,剪切整齐,要求剪刀刀口要长。用动力臂较长、阻力臂较短,同时刀口较
长的剪刀。
10. 杠杆定理
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
详解链接: http://ke..com/link?url=OMIL5IGzai6UnQ8Hvg2Y1jcOvb8_