導航:首頁 > 股市基金 > 矩陣黃金分割

矩陣黃金分割

發布時間:2021-07-15 11:57:22

❶ 浙大建築系對數學的要求是微積分還是高數啊

光說建築太籠統了,具體想學的是什麼專業。如果是建築學(本科多為五年制)為偏藝術類專業,畢業時拿的是建築學學士,這個專業對數學要求是很低的,大學里學的高數是專科教材,只學一個學期,考研都不考數學。如果是建築結構(或者叫建築工程,工業與民用建築等),就完全不一樣了,對數學要求較高,要學高數、概率論、數理統計,考研考數學一,畢業拿的是工科學士。

建築學需要的數學知識
三角函數,勾股定理,面積、體積公式,兩點間的直線距離,微積分,黃金分割,矩陣,概率統計,數列,幾何
1.三角函數:對基本三角函數的理解和簡單應用 2.勾股定理:熟練掌握
3.面積,體積:能夠熟練掌握公式,能夠熟練應用 4.微積分:能夠簡單的運用微積分來算不規則圖形的面積及體積
5.黃金分割:對黃金分割的熟練掌握,熟記黃金分割又稱黃金律,是指事物各部分間一定的數學比例關系,即將整體一分為二, 較大部分與較小部分之比等於整體與較大部分之比,其比值為 1∶0.618或1.618∶1,即長段為全段的0.618。0.618被公認為最具有審美意義的比例數字。上述比例是最能引起人的美感 的比例,因此被稱為黃金分割。
6.矩陣:理解矩陣的定義、掌握矩陣的基本律、掌握幾類特殊矩陣(比如零矩陣,單位矩陣,對稱矩陣和反對稱矩陣)的定義與性質、注意矩陣運算與通常數的運算異同。能熟練正確地進行矩陣的計算。
7.概率統計:對氣候及環境的統計往往會運用到其中的一些知識。
8.數列:熟悉和掌握簡單的數列知識也有一定的用途

❷ 王明利豐唇是永久存留的么

這個需要根據個人的自身情況來決定的,一般都是可以維持永久的,條件稍差一點的,可以填充1到2次,也可以保持永久,王明利極富經驗,各種情況都可以解決的很好。

❸ 黃金矩陣

黃金矩陣也叫黃金分割又稱黃金律,是指事物各部分間一定的數學比例關系,即將整體一分為二,較大部分與較小部分之比等於整體與較大部分之比,其比值為1∶0.618或1.618∶1,即長段為全段的0.618。0.618被公認為最具有審美意義的比例數字。上述比例是最能引起人的美感的比例,因此被稱為黃金分割。
a b
a:b=(a+b):a
常用希臘字母Ф表示這個值。
黃金分割奇妙之處,在於其比例與其倒數是一樣的。例如:1.618的倒數是0.618,而1.618:1與1:0.618是一樣的。
確切值為(√5-1)/2(x^2+x-1=0的一個根) 黃金分割數前面的2000位為: 0.618033988 74989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5921658946 6759551900 4005559089 5022953094 2312482355 2122124154 4400647034 0565734797 6639723949 4994658457 8873039623 0903750339 9385621024 3690285138 6804145779 9569812244 5747178034 1731264532 2041639723 2134044449 4873023154 1767689375 2103068737 8803441700 9395440962 7955898678 7232095124 2689355730 9704509595 6844017555 1988192180 2064052905 5189349475 9260073485 2282101088 1946445442 2231889131 9294689622 0023014437 7026992300 780308 1807545192 8877050210 9684249362 7135925187 6077788466 5836150238 9134933331 2231053392 3213624319 2637289106 7050339928 2265263556 2090297986 4247275977 2565508615 4875435748 2647181414 5127000602 3890162077 7322449943 5308899909 5016803281 1219432048 1964387675 8633147985 7191139781 5397807476 1507722117 5082694586 3932045652 0989698555 6781410696 8372884058 7461033781 0544439094 3683583581 3811311689 9385557697 5484149144 5341509129 5407005019 4775486163 0754226417 2939468036 7319805861 8339183285 9913039607 2014455950 4497792120 7612478564 5916160837 0594987860 0697018940 9886400764 4361709334 1727091914 33650137

❹ 請問下大家知道高中數學小論文要從什麼方面寫喲幫幫著急的人吧,書我在此先感受大夥了

我原來是數學課代表 我寫過的 並不難 比如說斐波那契數列的研究

斐波那契數列,

又稱黃金分割數列,指的是這樣一個數列:1、1、2、3、5、8、13、21、……在數學上,斐波納契數列以如下被以遞歸的方法定義:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在現代物理、准晶體結構、化學等領域,斐波納契數列都有直接的應用,為此,美國數學會從1963起出版了以《斐波納契數列季刊》為名的一份數學雜志,用於專門刊載這方面的研究成果。

定義

斐波那契數列指的是這樣一個數列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
特別指出:第0項是0,第1項是第一個1。
這個數列從第二項開始,每一項都等於前兩項之和。
斐波那契數列的發明者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci)

遞推公式

斐波那契數列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果設F(n)為該數列的第n項(n∈N*),那麼這句話可以寫成如下形式:
顯然這是一個線性遞推數列。
通項公式

(如上,又稱為「比內公式」,是用無理數表示有理數的一個範例。)
註:此時a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通項公式的推導

方法一:利用特徵方程(線性代數解法)
線性遞推數列的特徵方程為:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
則F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根號5】
方法二:待定系數法構造等比數列1(初等代數解法)
設常數r,s。
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
則r+s=1, -rs=1。
n≥3時,有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
……
F⑶-r*F⑵=s*[F⑵-r*F⑴]。
聯立以上n-2個式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。
∵s=1-r,F⑴=F⑵=1。
上式可化簡得:
F(n)=s^(n-1)+r*F(n-1)。
那麼:
F(n)=s^(n-1)+r*F(n-1)。
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公比的等比數列的各項的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
r+s=1, -rs=1的一解為 s=(1+√5)/2,r=(1-√5)/2。
則F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法三:待定系數法構造等比數列2(初等代數解法)
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求數列{an}的通項公式。
解 :設an-αa(n-1)=β(a(n-1)-αa(n-2))。
得α+β=1。
αβ=-1。
構造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以。
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。
由式1,式2,可得。
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
將式3*(1+√5)/2-式4*(1-√5)/2,化簡得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法四:母函數法。
對於斐波那契數列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2時)
令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。
那麼有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x
.因此S(x)=x/(1-x-x^2).
不難證明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].
因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.
再利用展開式1/(1-x)=1+x+x^2+x^3+……+x^n+……
於是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……
其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.
因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
與黃金分割

關系

有趣的是:這樣一個完全是自然數的數列,通項公式卻是用無理數來表達的。而且當n趨向於無窮大時,後一項與前一項的比值越來越逼近黃金分割0.618.(或者說後一項與前一項的比值小數部分越來越逼近黃金分割0.618、前一項與後一項的比值越來越逼近黃金分割0.618)
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………144÷233=0.618025…46368÷75025=0.6180339886…...
越到後面,這些比值越接近黃金比.
證明

a[n+2]=a[n+1]+a[n]。
兩邊同時除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]。
若a[n+1]/a[n]的極限存在,設其極限為x,
則lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。
所以x=1+1/x。
即x²=x+1。
所以極限是黃金分割比..
特性

平方與前後項

從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)
證明經計算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)
與集合子集

斐波那契數列的第n+2項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
奇數項求和

偶數項求和

平方求和

隔項關系

f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]
兩倍項關系

f(2n)/f(n)=f(n-1)+f(n+1)
其他公式

應用

生活中斐波那契

斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
斐波那契數與植物花瓣
3………………………百合和蝴蝶花
5………………………藍花耬斗菜、金鳳花、飛燕草、毛茛花
8………………………翠雀花
13………………………金盞和玫瑰
21………………………紫宛
34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
黃金分割

隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…
楊輝三角

將楊輝三角左對齊,成如圖所示排列,將同一斜行的數加起來,即得一數列1、1、2、3、5、8、……
公式表示如下:
f⑴=C(0,0)=1。
f⑵=C(1,0)=1。
f⑶=C(2,0)+C(1,1)=1+1=2。
f⑷=C(3,0)+C(2,1)=1+2=3。
f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
質數數量

斐波那契數列的整除性與素數生成性
每3個連續的數中有且只有一個被2整除,
每4個連續的數中有且只有一個被3整除,
每5個連續的數中有且只有一個被5整除,
每6個連續的數中有且只有一個被8整除,
每7個連續的數中有且只有一個被13整除,
每8個連續的數中有且只有一個被21整除,
每9個連續的數中有且只有一個被34整除,
.......
我們看到第5、7、11、13、17、23位分別是素數:5,13,89,233,1597,28657(第19位不是)
斐波那契數列的素數無限多嗎?
尾數循環

斐波那契數列的個位數:一個60步的循環
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
進一步,斐波那契數列的最後兩位數是一個300步的循環,最後三位數是一個1500步的循環,最後四位數是一個15000步的循環,最後五位數是一個150000步的循環。
自然界中巧合

斐波那契數列在自然科學的其他分支,有許多應用。例如,樹木的生長,由於新生的枝條,往往需要一段「休息」時間,供自身生長,而後才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以後長出一條新枝;第二年新枝「休息」,老枝依舊萌發;此後,老枝與「休息」過一年的枝同時萌發,當年生的新枝則次年「休息」。這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的「魯德維格定律」。
另外,觀察延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬斗菜、百合花、蝴蝶花的花瓣,可以發現它們花瓣數目具有斐波那契數:3、5、8、13、21、……
其中百合花花瓣數目為3,梅花5瓣,飛燕草8瓣,萬壽菊13瓣,向日葵21或34瓣,雛菊有34,55和89三個數目的花瓣。
斐波那契螺旋:具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該並非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的「優化方式」,它能使所有種子具有差不多的大小卻又疏密得當,不至於在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。葉子的生長方式也是如此,對於許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為「黃金角度」,因為它和整個圓周360度之比是黃金分割數0.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。1992年,兩位法國科學家通過對花瓣形成過程的計算機模擬實驗,證實了在系統保持最低能量的狀態下,花朵會以斐波那契數列長出花瓣。
數字謎題

三角形的三邊關系定理和斐波那契數列的一個聯系:
現有長為144cm的鐵絲,要截成n小段(n>2),每段的長度不小於1cm,如果其中任意三小段都不能拼成三角形,則n的最大值為多少?
分析:由於形成三角形的充要條件是任何兩邊之和大於第三邊,因此不構成三角形的條件就是任意兩邊之和不超過最大邊。截成的鐵絲最小為1,因此可以放2個1,第三條線段就是2(為了使得n最大,因此要使剩下來的鐵絲盡可能長,因此每一條線段總是前面的相鄰2段之和),依次為:1、1、2、3、5、8、13、21、34、55,以上各數之和為143,與144相差1,因此可以取最後一段為56,這時n達到最大為10。
我們看到,「每段的長度不小於1」這個條件起了控制全局的作用,正是這個最小數1產生了斐波那契數列,如果把1換成其他數,遞推關系保留了,但這個數列消失了。這里,三角形的三邊關系定理和斐波那契數列發生了一個聯系。
在這個問題中,144>143,這個143是斐波那契數列的前n項和,我們是把144超出143的部分加到最後的一個數上去,如果加到其他數上,就有3條線段可以構成三角形了。
影視作品中的斐波那契數列
斐波那契數列在歐美可謂是盡人皆知,於是在電影這種通俗藝術中也時常出現,比如在風靡一時的《達芬奇密碼》里它就作為一個重要的符號和情節線索出現,在《魔法玩具城》里又是在店主招聘會計時隨口問的問題。可見此數列就像黃金分割一樣流行。可是雖說叫得上名,多數人也就背過前幾個數,並沒有深入理解研究。在電視劇中也出現斐波那契數列,比如:日劇《考試之神》第五回,義嗣做全國模擬考試題中的最後一道數學題~在FOX熱播美劇《Fringe》中更是無數次引用,甚至作為全劇宣傳海報的設計元素之一。
推廣

斐波那契—盧卡斯數列

盧卡斯數列1、3、4、7、11、18…,也具有斐波那契數列同樣的性質。(我們可稱之為斐波那契—盧卡斯遞推:從第三項開始,每一項都等於前兩項之和f(n) = f(n-1)+ f(n-2)。
盧卡斯數列的通項公式為 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n
這兩個數列還有一種特殊的聯系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n
1
2
3
4
5
6
7
8
9
10

斐波那契數列F(n)
1
1
2
3
5
8
13
21
34
55

盧卡斯數列L(n)
1
3
4
7
11
18
29
47
76
123

F(n)*L(n)
1
3
8
21
55
144
377
987
2584
6765

類似的數列還有無限多個,我們稱之為斐波那契—盧卡斯數列。
如1,4,5,9,14,23…,因為1,4開頭,可記作F[1,4],斐波那契數列就是F[1,1],盧卡斯數列就是F[1,3],斐波那契—盧卡斯數列就是F[a,b]。
斐波那契—盧卡斯數列之間的廣泛聯系
①任意兩個或兩個以上斐波那契—盧卡斯數列之和或差仍然是斐波那契—盧卡斯數列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n
1
2
3
4
5
6
7
8
9
10

F[1,4]n
1
4
5
9
14
23
37
60
97
157

F[1,3]n
1
3
4
7
11
18
29
47
76
123

F[1,4]n-F[1,3]n
0
1
1
2
3
5
8
13
21
34

F[1,4]n+F[1,3]n
2
7
9
16
25
41
66
107
173
280

②任何一個斐波那契—盧卡斯數列都可以由斐波那契數列的有限項之和獲得,如
n
1
2
3
4
5
6
7
8
9
10

F[1,1](n)
1
1
2
3
5
8
13
21
34
55

F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34

F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34

F[1,3]n
1
3
4
7
11
18
29
47
76
123

黃金特徵與孿生斐波那契—盧卡斯數列
斐波那契—盧卡斯數列的另一個共同性質:中間項的平方數與前後兩項之積的差的絕對值是一個恆值,
斐波那契數列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
盧卡斯數列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]數列:|4*4-1*5|=11
F[2,5]數列:|5*5-2*7|=11
F[2,7]數列:|7*7-2*9|=31
斐波那契數列這個值是1最小,也就是前後項之比接近黃金比例最快,我們稱為黃金特徵,黃金特徵1的數列只有斐波那契數列,是獨生數列。盧卡斯數列的黃金特徵是5,也是獨生數列。前兩項互質的獨生數列只有斐波那契數列和盧卡斯數列這兩個數列。
而F[1,4]與F[2,5]的黃金特徵都是11,是孿生數列。F[2,7]也有孿生數列:F[3,8]。其他前兩項互質的斐波那契—盧卡斯數列都是孿生數列,稱為孿生斐波那契—盧卡斯數列。
廣義斐波那契數列

斐波那契數列的黃金特徵1,還讓我們聯想到佩爾數列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(該類數列的這種特徵值稱為勾股特徵)。
佩爾數列Pn的遞推規則:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
據此類推到所有根據前兩項導出第三項的通用規則:f(n) = f(n-1) * p + f(n-2) * q,稱為廣義斐波那契數列。
當p=1,q=1時,我們得到斐波那契—盧卡斯數列。
當p=1,q=2時,我們得到佩爾—勾股弦數(跟邊長為整數的直角三角形有關的數列集合)。
當p=-1,q=2時,我們得到等差數列。其中f1=1,f2=2時,我們得到自然數列1,2,3,4…。自然數列的特徵就是每個數的平方與前後兩數之積的差為1(等差數列的這種差值稱為自然特徵)。
具有類似黃金特徵、勾股特徵、自然特徵的廣義——斐波那契數列p=±1。
當f1=1,f2=2,p=2,q=1時,我們得到等比數列1,2,4,8,16……
相關數學

排列組合

有一段樓梯有10級台階,規定每一步只能跨一級或兩級,要登上第10級台階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級台階有一種登法;登上兩級台階,有兩種登法;登上三級台階,有三種登法;登上四級台階,有五種登法……
1,2,3,5,8,13……所以,登上十級,有89種走法。
類似的,一枚均勻的硬幣擲10次,問不連續出現正面的可能情形有多少種?
答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144種。
求遞推數列a⑴=1,a(n+1)=1+1/a(n)的通項公式
由數學歸納法可以得到:a(n)=F(n+1)/F(n),將斐波那契數列的通項式代入,化簡就得結果。
兔子繁殖問題

斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔子都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對
兩個月後,生下一對小兔對數共有兩對
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對
------
依次類推可以列出下表:
經過月數
0
1
2
3
4
5
6
7
8
9
10
11
12
幼仔對數
1
0
1
1
2
3
5
8
13
21
34
55
89
成兔對數
0
1
1
2
3
5
8
13
21
34
55
89
144
總體對數
1
1
2
3
5
8
13
21
34
55
89
144
233
幼仔對數=前月成兔對數
成兔對數=前月成兔對數+前月幼仔對數
總體對數=本月成兔對數+本月幼仔對數
可以看出幼仔對數、成兔對數、總體對數都構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<算盤全書>中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)的性質外,還可以證明通項公式為:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
數列與矩陣

對於斐波那契數列1、1、2、3、5、8、13、……。有如下定義
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
對於以下矩陣乘法
F(n+1) = 11 F(n)
F(n) 10 F(n-1)
它的運算就是右邊的矩陣 11乘以矩陣 F(n) 得到:
10 F(n-1)
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可見該矩陣的乘法完全符合斐波那契數列的定義
設矩陣A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*1
1 0 F(n) F(0) 0
這就是斐波那契數列的矩陣乘法定義。
另矩陣乘法的一個運演算法則A^n(n為偶數) = A^(n/2)* A^(n/2),這樣我們通過二分的思想,可以實現對數復雜度的矩陣相乘。
因此可以用遞歸的方法求得答案。
數列值的另一種求法:
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距離 x 最近的整數。
斐波那契弧線

斐波那契弧線,也稱為斐波那契扇形線。第一,此趨勢線以二個端點為准而畫出,例如,最低點反向到最高點線上的兩個點。然後通過第二點畫出一條「無形的(看不見的)」垂直線。然後,從第一個點畫出第三條趨勢線:38.2%, 50%和61.8%的無形垂直線交叉。
斐波納契弧線,是潛在的支持點和阻力點水平價格。斐波納契弧線和斐波納契扇形線常常在圖表裡同時繪畫出。支持點和阻力點就是由這些線的交匯點得出。
要注意的是弧線的交叉點和價格曲線會根據圖表數值范圍而改變,因為弧線是圓周的一部分,它的形成總是一樣的。

於公元1170年,卒於1250年,籍貫是比薩。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《算盤全書》(Liber Abacci)一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。

斐波那契數列在股市中的應用

時間周期理論是股價漲跌的根本原因之一,它能夠解釋大多數市場漲跌的奧秘。在時間周期循環理論中,除了利用固定的時間周期數字尋找變盤點之外,還可以利用波段與波段之間的關系進行研究。但無論如何尋找變盤點,斐波那契數列都是各種重要分析的基礎之一,本文將簡單闡述斐波那契數列及其與市場的關系。

工具/原料
步驟/方法
斐波那契數列由十三世紀義大利數學家斐波那契發現。數列中的一系列數字常被人們稱之為神奇數奇異數。具體數列為:1,1,2,3,5,8,13,21,34,55,89,144,233等,從該數列的第三項數字開始,每個數字等於前兩個相鄰數字之和。而斐波那契數列中相鄰兩項之商就接近黃金分割數0.618,與這一數字相關的0.191、0.382、0.5和0.809等數字就構成了股市中關於市場時間和空間計算的重要數字。
大到整個宇宙空間到小到分子原子,從時間到空間,從自然到人類社會,政治、經濟、軍事等,各種現象中的規律都能找到斐波那契數的蹤跡。世界著名建築如巴黎聖母院、埃菲爾鐵塔、埃及金字塔等均能從它們身上找到0.618的影子。名畫、攝影、雕塑等作品的主題都在畫的0.618處。報幕員站在舞台的0.618處所報出的聲音最為甜美、動聽。人的肚臍眼是人體長度的0.618位置,人的膝蓋是從腳底到肚臍眼長度的0.618。戰爭中0.618的運用也是無所不在,小到兵器的製造、中到排兵布陣到戰爭時間周期的運用,相傳拿破崙大帝即敗於黃金分割線。
在金融市場的分析方法中,斐波那契數字頻頻出現。例如,在波浪理論中,一輪牛市行情可以用1個上升浪來表示,也可以用5個低一個層次的小浪來表示,還可繼續細分為21個或89個小浪;在空間分析體系中,反彈行情的高度通常是前方下降趨勢幅度的0.382、0.5、0.618;回調行情通常是前方上升趨勢的0.382、0.5和0.618。
斐波那契數列在實際操作過程中有兩個重要意義:
第一個實戰意義在於數列本身。本數列前面的十幾個數字對於市場日線的時間關系起到重要的影響,當市場行情處於重要關鍵變盤時間區域時,這些數字可以確定具體的變盤時間。使用斐波那契數列時可以由市場中某個重要的階段變盤點向未來市場推算,到達時間時市場發生方向變化的概率較大。
圖1綜合指數(1A0001)2009年7月29日—12月31日日線圖
如圖1所示,綜合指數(1A0001)2009年8月4日的3478點到2009年9月1日階段低點2639點的時間關系是21個交易日,2009年9月1日的階段低點2639點到2009年9月18日的高點3068點是13個交易日的時間,到2009年9月29日的低點2712點是21個交易日,到2009年10月23日的高點3123點的時間是34個交易日,到2009年11月24日的年度次高點3361點的時間是55個交易日。
圖2綜合指數(1A0001)2009年7月10日—12月31日周線圖
如圖2所示,綜合指數(1A0001)2009年8月4日的高點3478點到2009年9月4日2639點的運行時間是5周;2009年9月4日的低點2639點到2009年11月27日反彈高點3361點的時間是13周。
斐波那契數列在股市中的應用
斐波那契數列在股市中的應用
第二個實戰意義在於本數列的衍生數字是市場中縱向時間周期計算未來市場變盤時間的理論基礎。這組衍生數列分別是:1.236、1.309、1.5、1.618、1.809、2、2.236、2.382、2.5等一系列與黃金分割0.618相關的數字。
在使用神奇數列時主要有六個重要的時間計算方法:
第一、通過完整的下跌波段時間推算未來行情上漲波段的運行時間。
第二、通過完整的上漲波段時間推算未來行情下跌波段的運行時間。
這兩種比例關系就像生活中我們經常見到的作用力與反作用的關系,乒乓球垂直掉到地面的高度決定乒乓球觸擊地面以後反彈的高度是同樣的道理。
第三、通過上升波段中第一個子波段低點到高點的時間推算本上升波段最終的運行時間。
第四、通過下降波段中第一子波段高點到低點的時間推算本下跌波段最終的運行時間。
這兩種比例關系就像生活中我們經常見到的推動力與慣性的關系,當古代弓箭的弓與弦被拉開的距離直接決定了未來箭向前飛行的距離。
第五、通過本上升波段中第一子波段的兩個相鄰低點的時間推算未來上升波段的最終運行時間。
第六、通過下降波段中第一子波段的兩個相鄰高點的時間推算本下跌波段最終的運行時間。
這兩種比例關系就像生活中我們經常見到的建築物地基寬度影響未來高度一樣重要。在材質相同的情況下,地基寬度越大,未來高度越高。
5
在這六種重要的時間計算方法中最為重要的就是計算過程中實際使用的參數,利用不同的參數會得到不同的答案,而使用過程中幾乎所有的重要參數都與斐波那契數列有關。由於篇幅原因,這里先埋個伏筆,我會在以後的文章中為股民朋友詳細闡述計算方法。

❺ 華為手機拍照 物體是放在黃金分割線交點嗎

1.專業級別鏡組件 mate s專業級別鏡組件包括:RGBW四色1300萬像素傳器;1.2°角OIS光防抖;單反級別獨立 ISP圖像信號處理器;耐磨透光藍寶石鏡…… 2.專業相機模式 華mate s專業相機模式支持手調節iso、曝光補償、白平衡及焦模式、控制快門速度等功能 強攝影功能堪比專業相機我真解手機我mate s專業照相功能 二、專業相機使用入門 1.用ISO照片增添亮澤 ISO即光度ISO高低代表相同EV曝光值選擇更高ISO光度光圈變情況能夠使用更快快門速度獲同曝光量般情況高ISO值彌補光線足ISO值越高相片亮度越高 舉例: 拍攝環境光線差拍攝象適合延快門間候需要高ISO幫助同照片噪點難避免所般說要光線允許我選擇較低ISO能獲較像質量 2.用白平衡原色彩本質 白平衡(White Balance簡稱WB)用控制相機色彩原物體顏色投射光線顏色產改變同光線場合拍攝照片同色溫平衡論環境光線何讓數碼相機默認白色讓能認白色平衡其顏色色光線色調顏色實質光線解釋 舉例: 穿著白色衣服陽光面我看衣服白色(固色)光燈面白色若換鎢絲燈我看衣服點偏黃(條件色)環境光帶顏色導致我拍射畫面物體顏色所改變所拍照獲物體固色原般說光線照明環境我選擇哪白平衡模式我通調節白平衡拍攝顏色風格特別照片 3.用曝光補償照片補光 曝光補償:意識變更相機自演算合適曝光參數讓照片更明亮或者更昏暗拍攝手照片暗要增加EV值EV值每增加1.0相於攝入光線量增加倍照片亮要減EV值EV值每減1.0相於攝入光線量減倍 4.用快門速度控制間即能控制畫面 快門速度實際即曝光間相機重要考察參數按快門考慮快門啟間並且掌握快門釋放機才能捕捉畫面Mate S快門速度調至8秒快調至1/4000秒 測光模式:Mate S專業相機模式提供三種測光模式:矩陣(默認)、央重點及點測光 舉栗: 數情況舞台攝影藝術照新聞特寫照片等般採用點測光落拍攝臉部細節等;特定條件需要准確測光測光范圍比點測光更選擇局部測光 6.用焦模式:表達需要注目細節 焦模式菜單列三選模式單自焦、連續自焦、手焦均與單反相機致其手焦模式極實用根據自想要拍攝效選擇應焦距 舉例: 要拍攝兩朵花微距根據自想要表達效選擇哪部作清晰部其區域虛化前景虛化及背景虛化通種式調節 三、輔助線黑白濾鏡使用讓操作更簡單、更炫酷 除述Mate S專業相機模式添加三與螺旋構圖輔助線、黑白濾鏡等 1.三則、黃金螺旋 三則稱黃金割整畫面橫、豎向各用兩條直線割等份三部我拍攝主體放置任意條直線或直線交點比較符合類視覺習慣拍攝直接調Mate S專業相機井字輔助線拍攝主體放4交叉點畫面立刻起 黃金螺旋名:斐波契螺旋線根據斐波契數列畫螺旋曲線自界完美經典黃金比例想拍構圖卻擔構圖知道候設計師黃金螺旋放入華Mate S專業相機模式 2.黑白濾鏡 HUAWEI Mate S深諳黑白魅力繼續追求絢麗視覺效同另闢蹊徑推黑白濾鏡相於彩色攝影黑白攝影種獨特藝術表現形式摒除顏色干擾拍攝更具視覺沖擊力照片 黑白濾鏡三種模式調節別:普通黑白模式、高強度比黑白灰密度黑白根據拍攝者喜、拍攝內容風格進行調節 本教程僅僅我HUAWEI Mate S專業相機模式初步入門導引更攝影達言傳身教及我自深入習才能真釋放我mate s強專業相機功能讓我用mate s手機努力實現堪比專業相機美美噠效吧我起腦洞打、激創作性拍身邊美景炫彩姿、拍自快樂點點滴滴、拍祖河山波瀾壯闊吧

❻ 什麼去淚溝的產品好點

這個方面我倒是知道一些的。。

❼ 從社會學角度怎麼看整容

APSC脂肪多能細胞面部填充術是將具有自我復制和多向分化潛能的原始細胞通過自體採集的組織細胞,經實驗室提取、分離、培養後將增殖的APSC脂肪多能細胞和脂肪通過微型管針分層次多點進行面部填充/除皺/塑形,多能細胞促進細胞維養再生,恢復細胞活性,重現生命活力,恢復年輕面容,從而實現由內而外真正意義上的年輕化抗衰老取自自體安全可靠 用自身脂肪組織做填充材料,加入自體APSC多能細胞大大提高脂肪成活率,對人體無副作用,沒有異物感,不會產生免疫反應,術後恢復至穩定狀態時間短。矩陣完美注射 以面部黃金分割比例為美學基礎,根據面部結構評估上、中、下面部結構及表皮、真皮和皮下組織三層皮膚結構,分區精確注射,使注射物不易吸收,從而實現塑形、美膚立體效果即做即走效果自然 通過亞洲ESAYLIPO+吸脂術抽取身體多餘脂肪進行面部填充,既能減肥塑形,又能美化面部,凹凸就地取材,瘦身美顏雙效合一,24小時後可進行正常清潔、護膚與化妝,不影響工作與社交活動。

❽ 自體脂肪填全臉後,特別丑,醫生審美太差,一年後一定可以吸收回原貌嗎現在一個月!後悔得想死!目前

自體脂肪填全臉後,特別丑,醫生審美太差,一年後一定可以吸收回原貌嗎?自體脂肪隆胸也稱為自體脂肪移植隆胸、自體脂肪注射隆胸,是從身體腰、腹、臀、腿等脂肪較豐厚的部位提取脂肪顆粒並移植到胸部的一種隆胸術。自體脂肪隆胸的基本原理是將身體上其他部位的多餘脂肪細胞移植注射到胸部,讓脂肪細胞重新生長,與自身胸部組織融為一體,使乳房豐滿、有型。本質上是自身的脂肪細胞換了個地方生長,相當於乳房的二次發育。由於是自己的脂肪細胞移植,所以不存在排異反應,從根本上保障了手術的安全。選擇正規專業的整形醫院是很重要的。

❾ 豐太陽穴材料的說明

太陽穴凹陷是一種常見的面相問題,也正是因為太陽穴處於額頭的兩側,所以從正面來看會影響到臉型面容,太陽穴凹陷要變豐滿主要有兩種——手術和非手術。這是兩種大的分類。對於太陽穴消瘦甚至凹陷的人來說,平時應該注意保養和休息,也可以選擇使用 丁姿亭 之類的來使太陽穴變飽滿,或者也可以通過食物來豐太陽穴的,比如含蛋白質類的食物、脂肪多的食物,但是一定不要過量哦。

閱讀全文

與矩陣黃金分割相關的資料

熱點內容
浙商證券傭金萬分之8 瀏覽:836
今日美棉期貨價 瀏覽:148
中行visa英鎊匯率查詢 瀏覽:413
羅斯公司理財自學 瀏覽:977
2014上市公司有可能重組的有哪些公司 瀏覽:495
10月7日日本對人民幣匯率 瀏覽:920
銀行理財資金對接信託 瀏覽:219
傭金寶創業板深圳 瀏覽:150
小蟻幣目前價格 瀏覽:741
人民幣兌換烏吉亞匯率 瀏覽:380
2017熊貓普制金幣價格 瀏覽:802
區縣金融辦改革成金融服務中心 瀏覽:853
口罩股票未來 瀏覽:341
調研拓展融資渠道 瀏覽:586
股指期貨操盤手大賽 瀏覽:190
對公外匯拓戶 瀏覽:239
廣發證券草根 瀏覽:49
銀行外匯英文單詞 瀏覽:398
長江小金屬網釩價格 瀏覽:608
絲路矽谷綜合金融服務中心 瀏覽:279