㈠ 明胶200动力明胶粉什么意思
冻力是明胶性能的重要指标之一,它的计量单位是bloom g(读音波罗姆 克),是按标准浓度制备胶液,在4摄氏度下冷冻24小时后,在冻力仪上测试的值。冻力越高,相同浓度、相同温度下明胶溶液冻得越结实。达到200bloom g的明胶是食用明胶或药用明胶中高档的。
㈡ 如何使用bloomfilter构建大型Java缓存系统
在如今的软件当中,缓存是解决很多问题的一个关键概念。你的应用可能会进行CPU密集型运算。你当然不想让这些运算一边又一边的重复执行,相反,你可以只执行一次, 把这个结果放在内存中作为缓存。有时系统的瓶颈在I/O操作上,比如你不想重复的查询数据库,你想把结果缓存起来,只在数据发生变化时才去数据查询来更新缓存。
与上面的情况类似,有些场合下我们需要进行快速的查找来决定如何处理新来的请求。例如,考虑下面这种情况,你需要确认一个URL是否指向一个恶意网站,这种需求可能会有很多。如果我们把所有恶意网站的URL缓存起来,那么会占用很大的空间。或者另一种情况,需要确认用户输入的字符串是包含了美国的地名。像“华盛顿的博物馆”——在这个字符串中,华盛顿是美国的一个地名。我们应该把美国所有的地名保存在内存中然后再查询吗?那样的话缓存会有多大?是否能在不使用数据库的前提下来高效地完成?
这就是为什么我们要跨越基本的数据结构map,在更高级的数据结构像布隆过滤器(bloomfilter)中来寻找答案。你可以把布隆过滤器看做Java中的集合(collection),你可以往它里面添加元素,查询某个元素是否存在(就像一个HashSet)。如果布隆过滤器说没有这个元素,那么可以肯定不含有这个元素,但是如果布隆过滤器说有某个元素,那么这个结果可能是错误的。如果我们在设计布隆过滤器时足够细心,我们可以把这种出错的概率控制在可接受范围内。
解释
布隆过滤器被设计为一个具有N的元素的位数组A(bit array),初始时所有的位都置为0.
添加元素
要添加一个元素,我们需要提供k个哈希函数。每个函数都能返回一个值,这个值必须能够作为位数组的索引(可以通过对数组长度进行取模得到)。然后,我们把位数组在这个索引处的值设为1。例如,第一个哈希函数作用于元素I上,返回x。类似的,第二个第三个哈希函数返回y与z,那么:
A[x]=A[y]=A[z] = 1
查找元素
查找的过程与上面的过程类似,元素将会被会被不同的哈希函数处理三次,每个哈希函数都返回一个作为位数组索引值的整数,然后我们检测位数组在x、y与z处的值是否为1。如果有一处不为1,那么就说明这个元素没有被添加到这个布隆过滤器中。如果都为1,就说明这个元素在布隆过滤器里面。当然,会有一定误判的概率。
算法优化
通过上面的解释我们可以知道,如果想设计出一个好的布隆过滤器,我们必须遵循以下准则:
好的哈希函数能够尽可能的返回宽范围的哈希值。
位数组的大小(用m表示)非常重要:如果太小,那么所有的位很快就都会被赋值为1,这样就增加了误判的几率。
哈希函数的个数(用k表示)对索引值的均匀分配也很重要。
计算m的公式如下:
m = - nlog p / (log2)^2;
这里p为可接受的误判率。
计算k的公式如下:
k = m/n log(2) ;
这里k=哈希函数个数,m=位数组个数,n=待检测元素的个数(后面会用到这几个字母)。
哈希算法
哈希算法是影响布隆过滤器性能的地方。我们需要选择一个效率高但不耗时的哈希函数,在论文《更少的哈希函数,相同的性能指标:构造一个更好的布隆过滤器》中,讨论了如何选用2个哈希函数来模拟k个哈希函数。首先,我们需要计算两个哈希函数h1(x)与h2(x)。然后,我们可以用这两个哈希函数来模仿产生k个哈希函数的效果:
gi(x) = h1(x) + ih2(x);
这里i的取值范围是1到k的整数。
Google guava类库使用这个技巧实现了一个布隆过滤器,哈希算法的主要逻辑如下:
long hash64 = …; //calculate a 64 bit hash function
//split it in two halves of 32 bit hash values
int hash1 = (int) hash64;
int hash2 = (int) (hash64 >>> 32);
//Generate k different hash functions with a simple loop
for (int i = 1; i <= numHashFunctions; i++) {
int nextHash = hash1 + i * hash2;
}
应用
从数学公式中,我们可以很明显的知道使用布隆过滤器来解决问题。但是,我们需要很好地理解布隆过滤器所能解决问题的领域。像我们可以使用布隆过滤器来存放美国的所有城市,因为城市的数量是可以大概确定的,所以我们可以确定n(待检测元素的个数)的值。根据需求来修改p(误判概率)的值,在这种情况下,我们能够设计出一个查询耗时少,内存使用率高的缓存机制。
实现
Google Guava类库有一个实现,查看这个类的构造函数,在这里面需要设置待检测元素的个数与误判率。
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
//Create Bloomfilter
int expectedInsertions = ….;
double fpp = 0.03; // desired false positive probability
BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charse
㈢ 英雄联盟在哪找整局游戏视频
自己录的吗?一般在(D:)一个叫英雄时刻的文件夹里,如果不在D盘的话,就在“我的电脑”右上角搜索一下“英雄时刻”者四个字
㈣ 如何使用bloomfilter构建大型Java缓存系统
在如今的软件当中,缓存是解决很多问题的一个关键概念。你的应用可能会进行CPU密集型运算。你当然不想让这些运算一边又一边的重复执行,相反,你可以只执行一次, 把这个结果放在内存中作为缓存。有时系统的瓶颈在I/O操作上,比如你不想重复的查...
㈤ guccibloom礼盒尺寸
这个礼盒的七寸,这个女孩的七寸,你可以找专业的包装礼盒的师傅帮你包装。
㈥ 《原神》bloom要不要开
要看玩家的设备和实际体验的感觉如何。
Bloom特效也就是全屏泛光特效,是用于影响游戏内的光照的表现效果的。虽然是新版本中玩家才看到了Bloom出现在设置里,但是这个技术肯定是之前就有用到的,只是之前不允许玩家自主调节而已。
更新后,Bloom设置似乎是默认关闭状态,如果有玩家发现有角色的技能特效的光亮感和华丽程度与之前有差异,应该就是因为这个bloom的缘故。
《原神》游戏简介
《原神》是由上海米哈游制作发行的一款开放世界冒险游戏,游戏发生在一个被称作“提瓦特”的幻想世界,在这里,被神选中的人将被授予“神之眼”,导引元素之力。
玩家将扮演一位名为“旅行者”的神秘角色,在自由的旅行中邂逅性格各异、能力独特的同伴们,和他们一起击败强敌,找回失散的亲人——同时,逐步发掘“原神”的真相。
㈦ 原神bloom是什么意思中文
bloom的意思就是发光特效,打开bloom可以提升画面质量,多了bloom会感觉全屏泛光,画面色彩和光影相对更好些,设置bloom的方法如下:
1、进入游戏,点击左上角的派蒙头像。
㈧ 如何使用bloomfilter构建大型java缓存系统
在如今的软件当中,缓存是解决很多问题的一个关键概念。你的应用可能会进行CPU密集型运算。你当然不想让这些运算一边又一边的重复执行,相反,你可以只执行一次, 把这个结果放在内存中作为缓存。有时系统的瓶颈在I/O操作上,比如你不想重复的查询数据库,你想把结果缓存起来,只在数据发生变化时才去数据查询来更新缓存。
与上面的情况类似,有些场合下我们需要进行快速的查找来决定如何处理新来的请求。例如,考虑下面这种情况,你需要确认一个URL是否指向一个恶意网站,这种需求可能会有很多。如果我们把所有恶意网站的URL缓存起来,那么会占用很大的空间。或者另一种情况,需要确认用户输入的字符串是包含了美国的地名。像“华盛顿的博物馆”——在这个字符串中,华盛顿是美国的一个地名。我们应该把美国所有的地名保存在内存中然后再查询吗?那样的话缓存会有多大?是否能在不使用数据库的前提下来高效地完成?
这就是为什么我们要跨越基本的数据结构map,在更高级的数据结构像布隆过滤器(bloomfilter)中来寻找答案。你可以把布隆过滤器看做Java中的集合(collection),你可以往它里面添加元素,查询某个元素是否存在(就像一个HashSet)。如果布隆过滤器说没有这个元素,这个结果可能是错误的。如果我们在设计布隆过滤器时足够细心,我们可以把这种出错的概率控制在可接受范围内。
解释
布隆过滤器被设计为一个具有N的元素的位数组A(bit array),初始时所有的位都置为0.
添加元素
要添加一个元素,我们需要提供k个哈希函数。每个函数都能返回一个值,这个值必须能够作为位数组的索引(可以通过对数组长度进行取模得到)。然后,我们把位数组在这个索引处的值设为1。例如,第一个哈希函数作用于元素I上,返回x。类似的,第二个第三个哈希函数返回y与z,那么:
A[x]=A[y]=A[z] = 1
查找元素
查找的过程与上面的过程类似,元素将会被会被不同的哈希函数处理三次,每个哈希函数都返回一个作为位数组索引值的整数,然后我们检测位数组在x、y与z处的值是否为1。如果有一处不为1,那么就说明这个元素没有被添加到这个布隆过滤器中。如果都为1,就说明这个元素在布隆过滤器里面。当然,会有一定误判的概率。
算法优化
通过上面的解释我们可以知道,如果想设计出一个好的布隆过滤器,我们必须遵循以下准则:
好的哈希函数能够尽可能的返回宽范围的哈希值。
位数组的大小(用m表示)非常重要:如果太小,那么所有的位很快就都会被赋值为1,这样就增加了误判的几率。
哈希函数的个数(用k表示)对索引值的均匀分配也很重要。
计算m的公式如下:
m = - nlog p / (log2)^2;
这里p为可接受的误判率。
计算k的公式如下:
k = m/n log(2) ;
这里k=哈希函数个数,m=位数组个数,n=待检测元素的个数(后面会用到这几个字母)。
哈希算法
哈希算法是影响布隆过滤器性能的地方。我们需要选择一个效率高但不耗时的哈希函数,在论文《更少的哈希函数,相同的性能指标:构造一个更好的布隆过滤器》中,讨论了如何选用2个哈希函数来模拟k个哈希函数。首先,我们需要计算两个哈希函数h1(x)与h2(x)。然后,我们可以用这两个哈希函数来模仿产生k个哈希函数的效果:
gi(x) = h1(x) + ih2(x);
这里i的取值范围是1到k的整数。
Google guava类库使用这个技巧实现了一个布隆过滤器,哈希算法的主要逻辑如下:
long hash64 = …; //calculate a 64 bit hash function
//split it in two halves of 32 bit hash values
int hash1 = (int) hash64;
int hash2 = (int) (hash64 >>> 32);
//Generate k different hash functions with a simple loop
for (int i = 1; i <= numHashFunctions; i++) {
int nextHash = hash1 + i * hash2;
}
应用
从数学公式中,我们可以很明显的知道使用布隆过滤器来解决问题。但是,我们需要很好地理解布隆过滤器所能解决问题的领域。像我们可以使用布隆过滤器来存放美国的所有城市,因为城市的数量是可以大概确定的,所以我们可以确定n(待检测元素的个数)的值。根据需求来修改p(误判概率)的值,在这种情况下,我们能够设计出一个查询耗时少,内存使用率高的缓存机制。
实现
Google Guava类库有一个实现,查看这个类的构造函数,在这里面需要设置待检测元素的个数与误判率。
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
//Create Bloomfilter
int expectedInsertions = ….;
double fpp = 0.03; // desired false positive probability
BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.forName("UTF-8")), expectedInsertions,fpp)
㈨ 我要招聘员工在哪里找招得快
58同城。
58同城成立于2005年12月12日,总部设在北京,在全国共拥有27家直销分公司。网站定位于本地社区及免费分类信息服务,帮助人们解决生活和工作所遇到的难题。
2020年6月16日,58同城发布公告,与Quantum Bloom Group Ltd.签订合并协议。根据协议,买方投资财团将以每股普通股28美元购买58所有已经发行股票,预估的总交易额为87亿美元(约合617亿元)。
站内业务
58同城是国内领先的生活分类信息网站,海量生活信息免费发布查询。提供找房子、找工作、二手物品买卖、二手车、58团购、商家黄页、宠物票务、旅游、交友等多种生活信息。每天千万人使用!58同城,您身边的生活帮手!
58同城网同时也为商业合作伙伴提供:最准确的目标消费群体、最直接的产品与服务展示平台、最有效的市场营销效果以及客户关系管理等多方面服务。宗旨是:为没有工作的人,创作一个属于自己的平台。