❶ 数学模型 与经济模型的区别
经济模型中的所有量都有有其所对应的经济学意义,数学模型中的各个量只起到一个标记作用,其实两者的区别与物理模型、数学模型之间的区别差不多,因为物理模型、经济学模型其实就是将物理问题、经济学问题转换成数学问题来解决。。。求采用。。。
❷ 数学建模 中模型的评价与分析
模型
的分析与评价分两方面,其一是模型与模型的对比,比如在预测问题中你为什么用了
灰色理论
而不用线性回归;其二是模型
内部
的比较,比如你已经知道1,2,3,4的数据预测了5的数据,模型检验时,你再预测4的数据,与真实4的数据进行比较
❸ 怎样从经济学角度运用数学模型分析问题 要举例子回答,
这方面的文章很多
不知道,你那能不能找到《统计研究》、《经济研究》的杂志
这个上面有很多,不过模型比较复杂
如果入门的话,可以看看计量经济学
给你举个例子:比如对GDP、财政收入、投资、消费数据建立回归模型,做相关分析
❹ 请问“数学模型”如何运用在期货投机交易中
金融数学,又称数理金融学等,是利用数学工具研究金融现象,通过数学模型进行定量分析,以求找到金融活动中潜在的规律,并用以指导实践。金融数学是现代数学与计算机技术在金融领域中的结合应用。目前,金融数学发展很快,是目前十分活跃的前言学科之一。
金融数学的发展曾两次引发了“华尔街革命”。上个世纪50年代初期,马克维茨提出证券投资组合理论,第一次明确地用数学工具给出了在一定风险水平下按不同比例投资多种证券,收益可能最大的投资方法,引发了第一次“华尔街革命”。
马克维茨也因此获得了1990年诺贝尔经济学奖。1973年,美国金融学家布莱克和舒尔斯用数学方法给出了期权定价模型,推动了期权交易的发展,期权交易很快成为世界金融市场的主要内容,成为第二次“华尔街革命”。2003年诺贝尔经济学奖第三次授予以数学为工具分析金融问题的美国经济学家恩格尔和英国经济学家格兰杰,以表彰他们分别用“随着时间变化易变性”和“共同趋势”两种新方法分析经济时间数列给经济学研究和经济发展带来巨大影响。
不仅仅是理论界在金融数学领域取得巨大的成就。实务投资派也运用金融数学模型在市场中取得了巨大的盈利。
数学教授出身的“模型先生”詹姆斯·西蒙斯(JamesSimons)连续两年在对冲基金经理人收入排行中位列第一。2005年,西蒙斯成为全球收入最高的对冲基金经理,净赚15亿美元,去年,他收入高达17亿美元,差不多是索罗斯的两倍。68岁的西蒙斯是世界级的数学家,也是最伟大的对冲基金经理之一。他24岁就出任哈佛大学数学系教授,曾与著名华裔数学家陈省身一同创立了Chern-Simons几何定律,该定律成为理论物理学的重要工具。西蒙斯和他的文艺复兴科技公司是华尔街一个彻底的异类,公司从不雇用华尔街人士,而是靠数学模型捕捉市场机会,用电脑作出交易决策,是这位超级投资者成功的秘诀。
“对积理论”也是用数学模型捕捉市场机会,量化资金管理,用计算机系统发出交易信号,通过大量的短线交易,达到稳定累盈的结果。
“数学模型”方法是针对或参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括的或近似地表述出来的一种数学结构。
采用“数学模型”做交易,相对于常用的技术分析、基本分析等方法有如下优势:
首先,交易更加精确量化。
技术分析、基本分析等方法的缺陷都是不能做到完全的精确量化。
技术分析主要是用来分析交易的进场、出场点的,是抉择交易时机的一种方法。技术分析理论的主要的代表有道氏理论、波浪理论、江恩法则等。主要分析方法有K线(日本线)理论、切线理论、形态理论、量价关系理论。主要的分析指标包括:趋势型指标、超买超卖型指标、人气型指标、大势型指标等内容。技术指标大多是线型的公式来表达价格涨落与历史价格成交量之间的关系。由于价格运动的复杂性用线型公式是无法概括表述的,所以存在技术指标时好时坏的现象。用几套技术指标叠加做出的系统,同样解释不了价格的运动。因为大多技术指标编制的思路及出发点雷同,趋向性一致,所以造成了好用都好用,不好用都无奈的现象。技术分析是成千上万证券市场投资者经验的结晶,它更像一门艺术。其一,在它的各种理论体系中,从定义到规则,都带有明显的经验总结色彩,不具备严格的数学推理过程;其二,它包含的理论很多,每位技术分析家都有不同的见地,这些分支理论并不能形成一整套相互辉映的理论体系。任何一种技术分析方法都不能完全适应于市场,每一种方法都有自己的盲点。
使用技术分析、基本分析无法精确量化交易。“数学模型”是采用离散采样的方法,对数据进行统计分析。根据证券市场的特性,价格是离散型的随机变量。“数学模型”会将随机变量的所有可能取值及相应的概率描述出来,模拟离散型随机变量的概率分布。通过概率进行资金分配,能够量化每笔交易手数。对交易的把控更加精确量化。
其次,能够克服人性在交易时的弱点。
在交易当中,最可怕莫过于人性的弱点。人的“贪婪”和“恐惧”在交易的过程当中会毫无遗漏的表现出来。有盈利的时候“惜卖”,亏损后又“死抱”;容易受到周边议论的影响,等等这些都会造成交易的随意性,导致亏损。用“数学模型”各种规则都是固定量化的,计算出来的结果也是确定、唯一的,能够避免投资者在交易时主观的判断。我们所要做的就是相信系统,严格执行。
下面,我们对“数学模型”类交易方法的特点进行总结,深一步讨论“数学模型”在交易中的应用。
1.认为价格的运动是随机与有序并存。它并不是完全随机,也没有固定的规律,它的运动具有一定的“人为特征表象”。整体而言,市场是有效的,但仍存在短暂的或局部的市场无效性,可以提供交易机会。
2.主要通过对历史数据的离散采样统计,找出金融产品价格、宏观经济、市场指标、技术指标等各种指标间变化的数学关系,发现市场目前存在的微小获利机会,并通过杠杆比率进行快速而大规模的交易获利。
3.通过高频次且快速的日内短线交易来捕捉稍纵即逝的机会。通过大量的交易次数对冲风险,累积盈利。
4.要求市场具有高活跃度和流动性。要求交易品种价格的运动具有连续性,以及成交量的活跃性。这一点主要是为了保证交易的可成交性。
5.运用现代计算机技术将“数学模型”转化为交易系统,通过计算机的海量运算能力实现应用。
❺ 怎样建立一个商品期货的数学模型
什么是数学模型?------凶猛的兽王们都成了保护动物,天不疼地不爱的乌龟兔子们还在有滋有味地赛跑。
❻ 证券与期货专业和数学有很大关系么
看你学到什么程度,一般大专阶段只需要四则运算,本科阶段需要学习数学模型,但是这个只是走过场,要求不严,看你个人的追求了。研究生阶段则非常依赖数学,可以说基本都是在学数学。
❼ 数学模型与数值模拟模型
1.数学模型
描述含水系统地下水渗流的数学模型为:
华北煤田排水供水环保结合优化管理
式中:H为含水层水位(m);H0为含水层初始水位(m);T为含水层的导水系数(m2/d);μ为潜水含水层给水度;承压含水层为贮水系数;q为二类边界的单宽流量(m3/d·m);ω为降雨入渗补给强度(m/d);Q为水井开采量、突水点突水量(m3/d);n为边界外法线;G为计算区域;Γ2为第二类边界。
2.计算区域剖分与时间步长
选用三角形网格有限差分法求解数学模型。将模拟计算区域剖分成358个单元,共210个节点,其中内节点150个,边界节点60个。剖分时使各种参数分区界线及地下水动态观测孔和开采井全部落在节点上;对枣沟和观孟前水源地及六斜坡突水点等开采较大的地区加密网格剖分,见图6-8。
考虑到大多数水文要素数据均按月统计,所以选取的计算时间单位为月,将所有的源、汇项及边界的数据均逐月整理成月平均值。
3.数值模拟模型
含水层第i节点均衡域的渗流差分方程为:
华北煤田排水供水环保结合优化管理
式中:fβ为属于第i均衡域的第β三角形单元的小四边形面积;Δβ是以i节点为公共顶点的第β三角形单元的面积;
华北煤田排水供水环保结合优化管理
图6-8 研究区网格剖分图
以下为几何量:
华北煤田排水供水环保结合优化管理
式中:下标i、j、m为三角形单元以逆时针排序的三个节点编号,k为时阶。
按同样形式写出剖分网格上所有节点均衡域的差分方程,则构成一个庞大的代数方程组。这就是计算区含水层渗流系统的数值模拟模型。该数值模型的矩阵形式为:
华北煤田排水供水环保结合优化管理
式中:[A]为导水矩阵;[D]为贮水矩阵;Ht为已知水头向量;Ht+1为待求水头向量;F为已知常数向量。
该模型系统采用迭代法求解[150~151]。其计算框图见图6-9。
图6-9 水资源模拟系统结构图
❽ 怎么学金融里的数学模型
金融数学的核心是金融衍生物的定价理论,无论从经济学还是数学都涉及较深的内容;期权定价模型:BlackSeholesMerton理论---这是所有金融数学理论的核心 金融数学,又称数理金融学等,是利用数学工具研究金融现象,通过数学模型进行定量分析,以求找到金融活动中潜在的规律,并用以指导实践。金融数学是现代数学与计算机技术在金融领域中的结合应用。目前,金融数学发展很快,是目前十分活跃的前言学科之一。
❾ 真的有能在期货中赚钱的数学模型吗
有的,现在机构投资者都是用模型进行程序化交易,以此实现亏少盈多。如果是散户的话劝你别想了,机构投资者用的模型不适合散户。除非你自己去自学自己写模型脚本。不要指望能从谁那里弄到这种神奇的模型,最后只会把你弄得倾家荡产。