导航:首页 > 股市股份 > 基因编辑上市公司

基因编辑上市公司

发布时间:2021-09-09 03:56:17

『壹』 日本批准基因编辑手段产生的西红柿流入市场,这个产品有何优势

西红柿这是我们很常见的蔬菜,很多人也是很喜欢吃,而人类是整个地球最高级的生物,这是一点也不夸张的,毕竟拥有这么高的科技程度,而我们也利用基因在改变这些蔬菜,比如这一次人们就会疑惑日本批准基因编辑手段产生的西红柿流入市场,这个产品有何优势?我觉得含量会更大,同时营养也是提高,这些都是不错的,我们来具体分析一下。

所以这一次的日本批准基因编辑手段产生的西红柿确实在营养含量等达到了更好的条件,但是副作用应该也是存在的,但是具体是什么这个就不知道了,但是作为宏观来看,这是很有意义的对于人们的生活来说,毕竟可以更低的价格得到更好的产品。

『贰』 基因组编辑技术有哪些优点及弊端,详述

1、优点:由于基因技术在生物工程中的特殊作用,基因技术革命是继工业革命、信息革命之后对人类社会产生深远影响的一场革命。

它在基因制药、基因诊断、基因治疗等技术方面所取得的革命性成果,将极大地改变人类生命和生活的面貌。同时,基因技术所带来的商业价值无可估量。

从事此类技术研究和开发企业的发展前景无疑十分广阔。前期美国股市基因技术类股票的大幅上涨表明投资者对此类公司前途看好。我国的基因技术研究取得了不少成果,相关上市公司值得关注。

2、缺点:基因工程产品的技术含量非常高,从目的基因的取得到表达载体的构建都是十分烦琐而艰巨的工作,必须在实验室中进行大量的工作。

因此,基因工程产品的前期研究和开发投入(R&D)非常高,尤其是对细胞因子和重组药物的生产只要取得了具有高表达量的生产菌株,掌握分离和纯化技术,利用普通的发酵罐就能生产。

如大举介入生物医药领域的日本麒麟株式会社原来是啤酒生产企业,掌握了生产技术后,利用原有的发酵设备便很快在细胞因子的生产领域占有了一席之地。

(2)基因编辑上市公司扩展阅读:

基因编辑已经开始应用于基础理论研究和生产应用中,这些研究和应用,有助于生命科学的许多领域,从研究植物和动物的基因功能到人类的基因治疗。下面主要介绍基因编辑在动植物上的应用。

基因编辑和牛体外胚胎培养等繁殖技术结合,允许使用合成的高度特异性的内切核酸酶直接在受精卵母细胞中进行基因组编辑。

CRISPR -Cas9进一步增加了基因编辑在动物基因靶向修饰的应用范围。CRISPR-Cas9允许通过细胞质直接注射(CDI)从而实现对哺乳动物受精卵多个靶标的一次性同时敲除(KO)。

『叁』 目前中国有人基因治疗视网膜色素变性成功的吗

佳学基因或许可以检测视网膜色素变性的基因突变序列后,找出病因,提出个性化治疗方案

『肆』 启函生物上市了吗

启函生物是一家基因编辑器官移植技术研发商,致力于使用基因编辑技术来获取可用于人体移植的异种细胞、组织和器官,解决器官移植供体短缺的问题,研发设计*代小猪,解决了异种器官移植的安全问题,同时建立了基因修改动物平台。目前没有启函生物上市和准备上市的消息。

『伍』 基因编辑技术是什么它是如何在医学领域应用的

6 基因疗法

基因编辑技术可以准确地改造人类基因,达到基因治疗效果。中国科学院生物化学与细胞生物学研究所李劲松研究组通过在小鼠胚胎中注射CRISPR/Cas9纠正白内障小鼠模型中的遗传缺陷,所产生的后代是可育的并能将修正后的等位基因传递给它们的后代。杜氏肌营养不良(DMD)是一种罕见的肌肉萎缩症,也是最常见的致命性遗传病之一,是由肌营养不良蛋白dystrophin基因突变引起。杜克大学Charles Gersbach研究组应用CRISPR/Cas9在DMD小鼠中将dystrophin基因突变的23外显子剪切,而合成了一个截短的但功能很强的抗肌萎缩蛋白,这是生物学家“首次成功地利用CRISPR基因编辑技术治愈了一只成年活体哺乳动物的遗传疾病”。

CAR-T治疗简图,图片来自onclive.com

基因编辑技术联合免疫疗法在肿瘤及HIV/AIDS治疗具有广泛的应用前景。嵌合抗原受体T细胞(Chimeric Antigen Receptor T cell,CAR-T)细胞治疗是非常有前景的肿瘤治疗方法。CAR-T细胞疗法在B细胞恶性血液肿瘤治疗中已经取得硕果。中科院动物研究所王皓毅研究组利用CRISPR/Cas9技术在CAR-T细胞中进行双基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美国斯隆凯特林癌症纪念中心Michel Sadelain研究组发现CRISPR/Cas9技术将CAR基因特异性靶向插入到细胞的TRAC基因座位点,极大增强了T细胞效力,编辑的细胞大大优于传统在急性淋巴细胞白血病小鼠模型中产生CAR-T细胞。

继诺华的Kymriah以及Gilead (kite Pharma)的Yescarta接连上市,CRISPR Therapeutics公司也在应用CRISPR/Cas9基因编辑技术开发同种异体CAR-T候选产品。2016年10月,四川大学华西医院的肿瘤医生卢铀领导的一个团队首次在人体中开展CRISPR试验,从晚期非小细胞肺癌患者体内提取出免疫细胞,再利用CRISPR/Cas9技术剔除细胞中的PD-1基因更有助于激活T细胞去攻击肿瘤细胞,最后将基因编辑过的细胞重新注入患者体内。

7 致病菌及抗病毒研究

微生物种群与人体医学,自然环境息息相关。北卡罗来纳大学Rodolphe Barrangou与Chase L. Beisel合作通过使用基因组靶向CRISPR/Cas9系统可靶向并区分高度密切相关的微生物,并程序性去除细菌菌株,意味着CRISPR/Cas9系统可开发成精细微生物治疗体系来剔除有害致病菌,人类将有可能精确控制微生物群体的组成。以色列特拉维夫大学Udi Qimron将CRISPR系统导入温和噬菌体中在侵染具有抗生素抗性的细菌以消灭此类细菌,CRISPR系统已具有成为新一类抗生素的潜力。Locus BioSciences公司也在开发在噬菌体中开发CRISPR系统以达消灭难辨梭菌的目的。

弗吉尼亚理工大学Zhijian Tu研究组在雄蚊子中进行M因子基因编辑,可以导致雌雄蚊之间的转化或雌蚊的杀戮,从而实现有效的性别分离和有效减少蚊子的数量,也将减少寨卡病毒及疟疾等传播。

基于CRISPR治疗不仅可以应用于根除共生菌或有益菌群的病原体,也可应用于靶向人类病毒,包括HIV-1,疱疹病毒,乳头瘤病毒及乙型肝炎病毒等。具有纯合的32-bp缺失(Δ32)的CC趋化因子受体5型(CCR5)基因的患者对HIV感染具有抗性。因此加利福尼亚大学Yuet Wai Kan在诱导多能干细胞iPSC中利用CRISPR系统引入纯合CCR5Δ32突变后,诱导分化后的单核细胞和巨噬细胞对HIV感染具有抗性。天普大学Kamel Khalili 课题组应用CRISPR/Cas9系统在宿主细胞基因组中精确编辑HIV-1 LTR U3区,从而在将艾滋病病毒从基因组中剔除。

8 核酸诊断及细胞事件记录

Cas12a (Cpf1)属于CRISPR家族另一核酸内切酶,它也可被gRNA引导并剪切DNA。但是,它不仅可以切割相结合的单链或双链DNA,也剪切其他的DNA。近日,加州大学伯克利分校Jennifer Doudna研究组开发了基于CRISPR的一项新技能——基因侦探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用单链DNA将荧光分子和淬灭分子连接构建成一个报告系统,当CRISPR-Cas12a在gRNA引导下结合到目标DNA并发挥剪切作用时,报告系统中的DNA也被剪切,荧光分子将被解除抑制。此系统在致癌性HPV的人的DNA样品检测HPV16和HPV18变现极佳。

布罗德研究所Feng Zhang研究组开发的基于CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活后,可以切割除靶序列外其他的RNA的特征,引入了解除荧光分子的抑制。此工具可实现一次性多重核酸检测,可同时检测4种靶标分子,额外添加的Csm6使得这种工具比它的前身具有更高的灵敏度,并将它开发成微型试纸条检测方法,简单明了易操作,已被研究人员成功应用于RNA病毒,如登革热病毒和寨卡病毒,及人体液样本检测。

Broad研究所David R. Liu研究组利用CRISPR/Cas9开发了一种被称为CAMERA(CRISPR-mediated analog multi-event recording apparatus)的记录细胞事件的“黑匣子”他们利用这个系统开发出两种细胞记录系统,在第一种被称为“CAMERA 1”的细胞记录系统中,研究人员利用细菌中质粒的自我复制但又严格控制其自身数量的特征,

将两种彼此之间略有不同的质粒以稳定的比例转化到细菌中,随后在接触到外来药物刺激时,利用CRISPR/Cas9对这两种质粒中的一种进行切割,通过对质粒进行测序并记录两种质粒比例的变化来记录细菌接触外来刺激的时间。另一种细胞记录系统被称为“CAMERA 2”,它利用基于CRISPR/Cas9的碱基编辑系统实现在细胞内特定信号发生时改变遗传序列中的单个碱基,以此实现对诸如感染病毒、接触营养物等刺激的记录。这套技术的出现将很大程度的帮助人们进一步了解细胞的各类生命活动的发生发展规律。

9 人类胚胎基因组编辑

2015 年 4 月,中山大学的黄军利用CRISPR/Cas9介导的基因编辑技术,同源重组修复了胚胎中一个引发地中海贫血β-globin gene (HBB)的突变。

图片来自kurzgesagt.org

2016年,广州医科大学的范勇团队在三原核受精卵中,应用基因编辑技术CRISPR受精卵中的基因CCR5进行编辑引入CCR5Δ32纯合突变由于当时脱靶效率问题突出,产生了镶嵌式的受精卵。

2017年8月2日,俄勒冈健康与科学大学胚胎细胞和基因治疗中心Shoukhrat Mitalipov研究组公布了其应用CRISPR在人类胚胎中进行DNA编辑的结果,纠正了突变的MYBPC3基因,其突变会引起心肌肥厚并将年轻运动员猝死。

『陆』 诺贝尔物理,化学奖依次揭晓 哪些概念股将迎来爆炒

今年的诺贝尔概念股又会牵涉哪些上市公司呢?
信威集团 .67 4.39%
10月6日、7日,备受瞩目的诺贝尔物理学奖、化学奖相继揭晓,中微子以及DNA和相关基因概念股已进入部分嗅觉敏锐的资金的视野。
兴业证券:信威集团等涉及中微子
10月6日,诺贝尔物理学奖揭晓,此奖项由日本科学家梶田隆章和加拿大科学家阿瑟·麦克唐纳摘得,原因是其发现了中微子振荡,证实了中微子有质量。

“这次颁发的两个诺贝尔物理奖项分别是大气中微子振荡和太阳中微子振荡,其他的还有反应堆中微子振荡和加速器中微子振荡,从来源上说基本上就是这四种研究手段。”中科院高能物理所研究员曹俊曾在接受《中国科学报》采访时表示,“中国在反应堆中微子振荡领域是世界上做得最好的。”

曹俊所说的“最好”,指的是大亚湾中微子实验。该实验由中科院高能物理研究所的科研人员2003年提出,利用我国大亚湾核反应堆群产生的大量中微子,研究中微子的第三种振荡方式。

《每日经济新闻》记者注意到,近年来我国在中微子研究领域不断稳步推进,继大亚湾反应堆中微子实验之后,由中国主持的第二个大型中微子实验站——江门中微子实验站于今年初也已经广东省江门开平市金鸡镇正式启动建设。

资料显示,中微子是一种质量极小,又不带电的中性基本微粒。它能以近光速进行直线传播并极易穿透钢铁、海水,以至整个地球,而本身能量损失很少,因此是一种十分理想的信息载体。

正是由于这一特性,中微子可以广泛应用在通讯、地质以及天文等多个领域。

兴业证券发布研报指出,未来在包括中微子通信技术、量子通信技术等信息传播领域,以及未来先进军事高科技武器和新医疗技术等高精端科研领域,中微子具有巨大的市场空间。A股上市公司中,信威集团、零七股份(000007,股吧)(以及三维通信(002115,股吧)均涉足相关领域,有望率先获益。

此外,万讯自控(300112,前收盘价22.07元)此前曾表示,已与相关方就“中国散裂中子源”项目进行论证并进行了样机实验,公司为该项目提供信号调理器产品(属公司二次仪表产品系列)。而“中国散裂中子源”项目与世界上正在运行的 “美国散裂中子源”、“日本散裂中子源”和“英国散裂中子源”一起构成了世界四大脉冲散裂中子源。

太平洋证券:基因测序公司有机会

10月7日,2015年诺贝尔化学奖揭晓,托马斯·林达尔、保罗·莫德里奇和阿奇兹·桑贾尔分享了这一奖项,获奖理由是“DNA修复的细胞机制研究”。

资料显示,DNA又称去氧核糖核酸,是一种分子,双链结构,可组成遗传指令,引导生物发育与生命机能运作,带有遗传讯息的DNA片段称为基因。

DNA修复是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能。研究DNA修复不仅是探索生命的一个重要方面,而且与军事医学、肿瘤学等领域密切相关。

实际上,以“基因编辑”等技术为代表的精准医疗目前已成为世界各国着力发展的一大新兴领域。今年1月底,美国总统奥巴马在2015年国情咨文演讲中即宣布,美国将开展精准医疗计划,致力于治愈癌症和糖尿病等疾病,让所有人获得个性化健康信息。

太平洋证券研究员景莹认为,随着基因测序领域的快速发展,我国的精准医疗计划也蓄势待发,拥有国内自主知识产权的基因测序仪器及设备的千山药机;为基因测序行业提供数据服务的荣之联;提前布局产前筛查以及肿瘤诊断等领域的北陆药业、达安基因等,均有较大市场机会与空间。

『柒』 日本批准销售基因编辑西红柿,这种西红柿有什么优点

相信大家都听说过转基因食品,在市场上我们也能看到转基因大豆,转基因食用油等等。但是我们对转基因食品还是有些排斥,因为我们并不知道转基因食品对我们身体会不会造成影响。基因编辑不知道大家有没有所了解,这是一种新兴的比较能精确对生物体基因组特定目标基因进行修饰的一种技术。这种技术运用也比较广泛,日本就已经批准基因编辑西红柿销售,当然这种技术所生产的食品也有一定的优点,不然也不能通过销售申请。很多人应该对基因编辑西红柿有很多疑问,这种西红柿究竟有什么优点呢?下面小编来说说我的看法!

以上就是小编的看法,基因编辑的西红柿主要的优点就是含有更多的Y-氨基酸,这种氨基酸对我们人体是有益处。那你们觉得这种西红柿还有其他的优点吗?快来评论区说说你们的看法吧!

『捌』 对人类进行基因编辑将会造成什么后果

会制造出奇形怪状的人类。

因为我们可以把我们身体当中的一些较为劣质的基因给剪裁,重新换为一些较为优质的基因,而且把这样的基因内部进行突变或者进行变异,利用其他动物的一个基因进行替换,那么我们人类就会拥有较长的生命力。

而且我们人类的一个形状也会发生一个较大的变化,例如我们有一些人会有4只眼睛一两张嘴巴或者8只手等等一些的情况。

基因组编辑技术优点:

由于基因技术在生物工程中的特殊作用,基因技术革命是继工业革命、信息革命之后对人类社会产生深远影响的一场革命。

它在基因制药、基因诊断、基因治疗等技术方面所取得的革命性成果,将极大地改变人类生命和生活的面貌。同时,基因技术所带来的商业价值无可估量。

从事此类技术研究和开发企业的发展前景无疑十分广阔。前期美国股市基因技术类股票的大幅上涨表明投资者对此类公司前途看好。我国的基因技术研究取得了不少成果,相关上市公司值得关注。

『玖』 基因编辑技术概念股有哪些

基因测序是精准医疗的入口,是精准医疗的重要一环。通过对病人临床信息资料的完整收集,对病人生物样本的完整采集,并通过基因测序、分析技术对病人分子层面信息进行收集,最后通过利用生物信息学分析工具对所有信息进行整合并分析,从而使得医生可以早期预测疾病的发生、可能的发展方向和疾病可能的结局,最后做出诊断。个股方面,根据产业链构成,建议关注三领域个股:测序技术水平发展方面,关注紫鑫药业(002118)、达安基因(002030);累积基因组样本领域,关注荣之联(002642)、中源协和(600645)、仟源医药(300254)、新开源(300109);医疗机构合作方面,关注北陆药业(300016)、千山药机(300216)、迪安诊断(300244)、汤臣倍健(300146)。

『拾』 中国基因编辑技术发展迅猛会领先美国吗

1月24日报道称,从3月份开始,现年53岁的杭州肿瘤医院的院长兼肿瘤医生吴式琇就一直在尝试用一种很有希望的新型基因编辑工具Crispr-Cas9来治疗癌症患者。这种工具由美国科学家设计,从2012年媒体报道说可以用来编辑DNA之后就引发了全球关注。

据美国1月23日报道,吴式琇所在医院的团队从食道癌患者身上抽取血液,用高铁将血液送到一间实验室,该实验室使用Crispr-Cas9删除一段干扰免疫系统抗癌能力的基因,从而改进抗病细胞,然后将这些细胞注回到患者体内,希望重新编程的DNA能消灭癌症。相比之下,中国以外的首例Crispr人体试验还没开始。美国宾夕法尼亚大学用了近两年时间来解决联邦机构等部门的要求,其中包括尽可能减小患者风险的种种安全检查。

阅读全文

与基因编辑上市公司相关的资料

热点内容
融资固定年限 浏览:6
理财通的四个货币基金 浏览:740
上海银行接收外汇 浏览:997
仁智股份后市怎么走 浏览:726
上市公司子公司创业板上市 浏览:276
香港海外汇款要手续费 浏览:558
天马股份介绍 浏览:114
张凡股票 浏览:527
黄金交易所的英文缩写 浏览:844
济源钢铁是上市公司 浏览:965
捷众融资租赁有限公司官网 浏览:207
三国志10交易所哪里有 浏览:713
支付宝上的理财产品可靠 浏览:166
vsto外汇 浏览:673
大数据融资模式 浏览:146
银行卡被理财 浏览:368
住房公积金好贷款吗 浏览:823
每月还贷款 浏览:970
黄金查看软件 浏览:209
贷款还不起的后果 浏览:3