㈠ 人工智慧在金融科技領域有哪些應用呢
人工智慧助推了金融科技的發展,自然在金融科技領域的應用比較多比如睿智合創(北京)科技有限公司(簡稱「睿智科技」),就是一家利用人工智慧技術在金融科技領域實現服務與產品廣泛應用的企業。睿智科技的業務以大數據評分為「一個中心」,以科技賦能和智能導流為「兩個基本點」,三大核心板塊圍繞著解決銀行等金融機構的風控和獲客兩大痛點展開,且已經與國內排名前列的大中型銀行開展了緊密合作。
㈡ 人工智慧在金融領域,有哪些應用產品
「人工智慧」一詞最初是在1956 年Dartmouth學會上提出的。從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展。人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。
人工智慧是對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。
㈢ 人工智慧是如何應用於金融反欺/詐領/域的具體技/術和場景如何
一、什麼是消費金融行業的反欺詐?
說起「反欺詐」,放在三年前提起或許還有很多人感到陌生,這種主要面向企業級的應用,通常深藏在銀行、保險等金融行業的內部系統中,亦或者是各大互聯網公司安全系統中,說起來總帶著幾分神秘感。
近些年,隨著「互聯網 金融」的迅速壯大,誕生出不少第三方公司,專門為金融機構提供風控和反欺詐服務, 「反欺詐系統」這才在金融科技圈流傳開來。
其實縱觀整個金融服務業,尤其是借貸業,大家都面臨著兩種相同的風險:欺詐風險和信用風險。欺詐風險,主要指的是借貸申請人沒有還款意願;信用風險,主要指的是借貸申請人沒有還款能力。在我國,放貸機構所承受的欺詐風險遠超過信用風險。
對於這種情況,Maxent(猛獁反欺詐)的創始人張克曾說過:"金融是一個'刀口舔血'的行業,風控是生命線。沒有好的風控,金融機構很難生存下去。所以,金融業反欺詐的風控需求一直很強勁。"
二、數據 技術能否滿足反欺詐系統?
面對形形色色的欺詐份子和欺詐手段,如何解決欺詐風險,成為眾多借貸公司的頭號問題。反欺詐作為一個業務,流程包括三個步驟:
1、檢測(Detect)。 從技術層面來看,利用演算法,自動檢測異常,從數據層面來看,建立黑名單,及時發現風險;
2、響應(Response)。對異常行為採取阻斷一次交易、拉黑或者其他方式;
3、預防(Prevention)。將異常行為收錄入黑名單等,固化成規則,如果下次再有行為觸碰到規則,系統會進行預設的響應。
舉一個例子,銀行的反欺詐方法是建立基於專家經驗的規則體系,其運作模式是:將遇到的每一次欺詐的行為特點記錄下來形成「規則」,下次再遇到此類行為規則體系會自動做出人工介入或拉黑的響應。
但是,通過黑名單進行反欺詐檢測會隨著時間的推移失效,失效的速度可能會很快。因為黑名單的記錄是基於之前發生的欺詐行為數據,欺詐份子的手段和技術不斷迭代更新時,並沒有一種有效的途徑去預測或預防下一次將會發生怎樣的欺詐行為。
消費信貸的普遍特點是小額、分散,互聯網消費信貸還具有高並發特點,單單使用傳統的專家規則體系是很難對抗互聯網消費信貸中的欺詐的,整個行業都在等待一種新的技術跟專家規則體系協同作戰,這時,有人提到了人工智慧。
三、人工智慧與反欺詐
說起人工智慧,美國政府曾發布過一份報告(美國總統行政辦公室和白宮科技政策辦公室,《為人工智慧的未來做好准備(Preparing for the Future of Artificial Intelligence)》)做出解釋,「一些人將人工智慧寬泛地定義為一種先進的計算機化系統,能夠表現出普遍認為需要智能才能有的行為。其他人則將人工智慧定義為一個不管在真實環境下遭遇何種情況,都能合理解決復雜問題或者採取合理行動以達成目標的系統。」簡單來說,人工智慧讓機器更加智能,使機器能夠最大化自身的價值。
人工智慧最重要的技術手段之一,就是機器學習。我們很容易聯想到前段時間谷歌AlphaGo大勝圍棋名家李世石的事情,這件事充分展現了大數據雲時代機器學習的強大實力,機器學習也是人工智慧近期取得的很多進展和商業應用的基礎。
機器學習在反欺詐運用上同樣十分流行,Forrester在其2015年的欺騙報告中曾指出,機器學習是一項阻止欺騙的發生,同時能保證快速決定的機制。如果說專家系統旨在模仿人類專家遵循的規則,識別拉黑曾經發生過欺詐行為,那麼人工智慧中的機器學習則依靠統計學方式自行尋找能夠在實踐中發揮功效的決策流程,分析大數據,進而預測用戶行為。
國外已有科技人士對人工智慧領域表示了高度關注,谷歌CEO桑達爾·皮查伊表示:「機器學習是一項顛覆性的核心技術,它促使我們重新思考我們做一切事情的方式。我們將這項技術應用於我們的所有產品,包括搜索、廣告、YouTube或者Google Play。我們還處於發展初期,但你們終會看到我們將機器學習系統應用到所有領域。」
國內,金融科技公司京東金融也在投身於這場科技浪潮,以它為例,來看看人工智慧在消費金融領域是如何實現反欺詐的。
四、從京東金融看人工智慧的反欺詐實踐
京東消費金融目前有兩大核心模型體系,既有專家規則體系,又應用了人工智慧,兩大模型體系中與反欺詐直接相關的是「司南」和「天盾系統」:
1、數據驅動的模型體系——「四大發明」
2、技術驅動的風控體系——「四重天」
△來源:零壹財經
天盾系統應用了人工智慧,是白條賬戶的風控安全大腦。主要用途是預測用戶是否有欺詐風險,對賬戶進行分析來給予不同等級的防範處理。
天盾系統借鑒了交易監控系統的經驗,針對注冊、登錄、激活、支付、修改信息等全流程,基於賬戶歷史行為模式、賬戶關系網路、當前操作行為和設備環境,評估賬戶安全等級、環境安全等級、行為安全等級,防範賬戶被盜、撞庫(指黑客通過收集互聯網已泄露的用戶和密碼信息,生成對應的字典表,嘗試批量登陸其他網站後,得到一系列可以登錄的用戶賬戶)、惡意攻擊等風險,實現全流程風險監控,形成反欺詐網路,極大地增加了惡意用戶作案成本。
京東金融既有內部生態體系產生的數據,也有不斷擴充的外部數據,覆蓋面廣、維度多、實時更新,這為人工智慧反欺詐奠定了強有力的基礎。通過自動化風控系統,實現全流程風險監控,欺詐惡意份子作案成本不斷提高。目前,京東金融風控系統累計攔截疑似欺詐申請數十萬起,攔截高風險訂單數億元。
五、人工智慧反欺詐的未來
人工智慧將不斷加強金融領域的智能化和反欺詐,通過人工智慧技術反欺詐,將是未來發展的大趨勢:
首先,欺詐者的行為在某些維度上與非欺詐者一定是有差異的,一個人如果偽造一部分信息,尚且比較容易,但是要偽造全部信息,一來十分非常困難,二來成本非常高。通過技術,將這種異樣捕捉起來,進而識別用戶的真正意圖;
其次,商業市場變化很大,銀行等大型機構僅僅利用自身的反欺詐團隊人手和技術,專業水平有限,很難跟上外部變化,必定需要專業的第三方服務;
最後,反欺詐並不是單一的技術,它具有多元化的特點,市場上很難出現一家機構能將所有技術都做得很精,舉一個例子:美國一家大型銀行平均會使用30家反欺詐機構的技術,而電商平均會採用7家反欺詐機構的技術。大量的市場需求,促進反欺詐更進一步的發展。
可以大膽預測,未來,會有更多的金融科技公司將把在消費金融服務的數據、機器學習等實踐經驗對外輸出,促進人工智慧在反欺詐領域的應用。而這,就是檸檬一直在做的事,致力於提供消費金融領域大數據風控技術和綜合解決方案,為金融企業提供個性化和產品化的大數據風控解決方案,通過資源整合,讓金融機構提升風控效率、降低風控成本。
㈣ 如何將大數據與人工智慧應用於金融領域
科學計算。計算機在科學計算領域中應用包括大型水壩的設計、衛星軌道的計算、天氣預報、核爆炸模擬等。在數據處理方面的應用是在企業管理、金融商貿、辦公事務、教育衛生、軍事活動、情報檢索等方面,對大量數據進行搜集、歸納、分類、整理、存儲、檢索、統計、分析、列表、繪圖等。過程式控制制是使用計算機對生產過程和對象進行控制。很明顯預測天氣情況是計算機在科學計算領域中的應用。
㈤ 人工智慧在金融科技領域有哪些應用
應用場景一:徵信與風控 近幾年,國內P2P和現金貸的大量涌現,說明了個人小額信貸的市場需求巨大。在過去,針對該類小貸用戶,一般單純地依靠地推人員挨家挨戶進行實地徵信。如今,基於大數據和人工智慧技術,可以實現智能徵信和審批,極大地提高工作效率。通過多渠道獲取用戶多維度的數據,如通話記錄、簡訊信息、購買歷史、以及社交網路上的相關留存信息等;然後,從信息中提取各種特徵建立模型,對用戶進行多維度畫像;最後,根據模型評分,對用戶的個人信用進行評估。同樣,對於市場上中小微企業融資難的問題,也可以通過大數據徵信得以解決。 相對於徵信,在風控中,貸前要識別貸款人信息的真實性,還要識別其還款意願和還款能力,貸中通過監控貸款人的行為數據及時發現異常,貸後通過反饋數據補充信用評分。在這個過程中,利用用戶數據積累和人工智慧技術建立有效的智能化風控體系是核心能力,直接決定著一個平台能否持續健康地運營。應用場景二:反欺詐 金融安全是維護金融秩序的基石。與虛擬的社交網路不同,金融用戶需要驗證身份的真實性,其中可能涉及的技術包括人臉識別、語音識別、指紋識別和虹膜識別等。相對於我們人類,人工智慧在此領域往往表現得更加優異,不僅能縮短識別時間,還能降低識別錯誤率。如今,越來越多的人工智慧應用出現在現實生活中,比如指紋付款、掃臉取款等。 此外,人工智慧在網路反欺詐方面也發揮著巨大的作用,機器可以從海量的交易數據中學習知識和規則,發現異常,比如防止盜刷卡、虛假交易、惡意套現、垃圾注冊、營銷作弊等行為,為用戶和機構提供及時可靠的安全保障。應用場景三:智能投顧 智能投顧是在多個市場和大資產類別之間構建投資組合,分散風險,追求長期收益。 與傳統方式有所區別,智能投顧可結合現代資產組合理論和投資者偏好為投資者提供建議,加快釋放投資理財的「長尾」市場,具有傭金低和信息透明等特點。更通俗點說,智能投顧實際上是把私人銀行的服務在線智能化,服務更廣泛的普通老百姓。 當前,智能投顧平台已經在國內市場出現。2016年12月,招商銀行摩羯智投正式上線,這是國內銀行業首家推出的智能投顧服務。據介紹,摩羯智投運用機器學習演算法,融入招行多年的業務經驗,在此基礎上構建了以公募基金為基礎的、全球資產配置的「智能基金組合配置服務」。在客戶進行投資期限和風險收益選擇後,摩羯智投會根據客戶自主選擇的「目標-收益」要求,構建基金組合,由客戶進行決策、「一鍵購買」並享受後續服務,使得投資小白也可以輕松使用。應用場景四:營銷與客服 在金融平台上,如何識別有效的客戶往往是難點。而人工智慧可以通過用戶畫像和大數據模型精準找到用戶,實現精準營銷。 另外,在客服中,用戶咨詢的問題大都是重復性的,而且往往限定在幾個特定的領域內,這些特點使其成為自然語言處理和智能客服機器人的極佳選擇。通過智能客服機器人可以發掘用戶的需求,解釋和推薦產品,還能帶來銷售轉化。智能客服可以解決用戶的大部分問題,在非常確定答案的時候可以直接回答,在不確定時把可能的答案提供給人工客服,由人工客服判斷選擇最佳答案發送給用戶。這樣極大地提升了客服效率和用戶體驗,同時也降低了人力成本。應用場景五:投資決策 在投資機構和投行部門中,日常的工作如收集大量的資料、進行數據分析、報告撰寫等,往往佔用了大量的時間和精力。而在處理海量的數據信息時,機器擁有天然的優勢,通過自然語言處理技術可以理解文本信息,尋找市場變化的內在規律。一個經典案例是沃爾瑪超市發現尿布和啤酒放在一起會增加銷量。大數據可以發現看似毫不相關的事件間的關聯性,應用在投資領域也會有同樣的效果,比如蘋果發布新手機會影響哪些公司的股價等。 人工智慧還能夠根據收集到的市場歷史數據進行預測,分析判斷企業的成長性,從而輔助投資決策。一個著名例子是,美國最大的信用卡行CapitalOne的兩名員工利用職務便利,分析了至少170家上市零售公司的信用卡消費情況,並據此預測這些公司的營業收入,然後提前購入看漲期權或看跌期權,三年內投資收益率高達1800%。雖然是反例,但對於智能預測應用有很好的啟發意義。 此外,機器還可以根據收集到的資料,自動生成大量格式固定的文檔,比如招股說明書、研究報告、盡調報告和投資意向書等,從而提高效率,減少枯燥的重復性工作。
㈥ 人工智慧在金融領域有哪些應用場景和作用
人工智慧在金融領域是可以發揮多樣性作用,但首先我們要了解人工智慧是什麼?
網路上的解釋是:人工智慧,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或者人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。
關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS_MIND))等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。
也就是說利用人本身的智能與分析問題、解決問題,形成一種演算法機制。
在金融中,獲客、風控、身份識別、客服等金融行業中的內容都可以利用人工智慧進行改變,以較容易理解的客服為例,傳統的金融客服都是人工的,而通過人工智慧技術和自然語言處理,可以將客戶問題進行分析,通過演算法給出准確的回復,這就大大節省了金融服務的成本,在這一方面,傳統金融機構並不都具備這樣的技術實力,但是許多大型互聯網公司都結合自身技術優勢對此進行了技術研發,並將研發成果輸出給金融機構,形成了良性循環。
㈦ 人工智慧在金融領域的廣泛應用,會給監管帶來哪些挑戰
人工智慧不僅有助於金融機構提高運營效率、降低風險損失、提升用戶體驗、拓寬銷售渠道,還能夠提升金融服務的普惠程度。然而,不成熟的人工智慧也可能導致系統性風險,影響金融穩定。可見,對金融領域中的人工智慧系統進行監管很有必要,但當前對人工智慧的監管仍面臨多項挑戰。
首先,當人工智慧提供的金融服務出現問題時,責任方難以確定。在人工智慧系統的設計和應用過程中,會涉及多個參與主體,包括運用人工智慧提供服務的金融機構、人工智慧系統的訓練人員和設計公司等。當用戶由於人工智慧提供的服務而遭受損失或者出現其他問題時,目前在法律上尚未對責任方作出規定,也未規定各責任方的責任分擔機制。
其次,人工智慧單獨提供金融服務與現有法律法規相悖。以人工智慧在投資顧問中的應用為例,美國金融業監管局(FINRA)指出,在沒有人為參與的情況下,由人工智慧提供的投資顧問服務不符合顧問受託標准。此外,根據美國相關的法律法規和美國證監會發布的《1940年投資顧問法》,投資顧問被視為受託人,有義務給投資者提供最適宜的建議。但是人工智慧投資顧問無法對投資者賬外資產進行詳盡調查或向投資者咨詢這方面信息,而投資者的賬外資產直接影響其全面的財務狀況,在這種情況下,人工智慧投資顧問提供的個性化投資建議是否最適合投資者就有待商榷。2016年4月1日,馬薩諸塞州證券部也發表政策聲明:由於人工智慧投資顧問存在缺陷,無法進行投資組合分析,這將導致其無法為客戶爭取到最大的利益,即無法履行信託義務,因此人工智慧投資顧問不能作為受託人,無法在馬薩諸塞州登記為投資顧問。
再次,目前對人工智慧系統的信息披露並無統一標准,監管部門需制定人工智慧系統的信息披露標准,同時權衡過度披露和披露不足之間的矛盾。對人工智慧的信息披露有兩方面要求,一方面,需要保護用戶的知情權,需要對人工智慧系統的運行原理、運行情況等信息進行充分披露;另一方面,需要保護人工智慧系統的信息機密,防止不法分子運用披露信息「模仿」該系統,從而給金融機構或者人工智慧企業帶來損失。此外,人工智慧的決策過程是個「黑匣子」,如何讓公眾了解人工智慧的決策過程將會是信息披露的難點。
最後,人工智慧對監管人員提出了新要求。對於人工智慧的監管,需要監管人員對人工智慧的相關知識有所掌握,若是對人工智慧的相關知識不甚了解,就難以理解人工智慧系統的運作方式,更加難以判斷其是否遵守監管要求。此外,監管部門需要對人工智慧的系統演算法進行測評,監管人員只有在熟悉人工智慧相關知識的基礎上,才能完成人工智慧系統的測評過程,並判斷測評方式是否合理。
㈧ 你認為,人工智慧技術引入金融服務中是一件好事嗎
人工智慧與金融的全面融合業內又稱之為智能金融,即以大數據、雲計算、區塊鏈、人工智慧等高新科技為核心要素,全面賦能金融機構,提升金融機構的服務效率,從而更好地拓展金融服務的廣度和深度。中騰信的智能金融技術,首先將人工智慧的生物識別技術、知識圖譜技術等復合應用在了金融機構最為關心的貸前反欺詐環節上,如採用人臉核身技術,用戶只要跟著屏幕和語言提示完成眨眼、張嘴、搖頭等隨機動作,整個身份核實環節就完成了,可便捷有效地識別虛假、冒用身份行為,去偽存真。
對於金融業而言,人工智慧正滲入到每個角落,這是時代的趨勢,同時也是行業發展的必然方向,智能金融技術的進步將為金融行業帶來更大的潛能。人工智慧與金融業務深入融合,中騰信專業科技重塑金融業態,將會帶來行業發展前景的無限可能。