『壹』 如何評價一個量化交易策略
個人感覺:
分兩種
第一種,安全+盈利少一些也可以。
1。回撤少(15%內),最好10%以內 沒心裡壓力。
2。盈利穩定,年化可以到10%以上。熊市可以低(大於3%?),但牛市可以補足,但熊市不能低於比如一年定期。否則沒有執行下去的勇氣。
第二種,非常高風險,不過終級盈利一定要非常非常非常非常誇張。
1。回撤可以95%。
2。盈利在某個頂點可以達到比如500倍?1000倍?類似彩票的玩法。拿到500倍,止盈從頭再來一次。
以上個人感覺,沒有系統學習過。歡迎討論。
『貳』 量化交易員是策略研發要求高還是交易要求高
在整個量化交易策略的研發流程當中,買和賣是最為基本的量化交易策略組成部分,而這個部分的設定主要與收益情況相關。這里所說的相關,具體分為兩種不同的情形,一種是總體的關聯性,即基於買點、賣點的選擇,買賣策略應該得到一個正的整體收益。另一種則來自於對交易資產未來收益的判斷、或者說預測,即判斷交易資產的未來收益為正時,就買入資產;判斷交易資產的未來收益為負時,則賣出或賣空資產。實際操作中,這兩種關聯關系的情況可能更為復雜一些。有的時候,買和賣的具體操作也可能受到風險方面設置的影響,例如為了限制單次交易的最大損失而採取止損之類的操作時,用於清倉的買賣設置就會相應的變動,這也是作者將風險和買賣用虛線相連的原因。不過在大部分情況下,買賣這一最為基本的組成部分還是與收益的關系最大,研究者也應該在研發這一個組成部分時,著重考慮收益情況的具體影響。
對量化交易策略風險的控制可能會影響到量化交易策略中的買賣設置,但是在更普遍的情況下,風險這一因素主要影響的是交易倉位的設置。當然,前提條件還是需要買賣策略的總體收益為正,在這樣的條件下再結合倉位的設置,才能夠在合適的風險水平下取得達到要求的收益。通過對交易資產具體倉位的調整,交易者可以比較直接的控制單次交易以及整個交易策略的風險水平。例如在滿倉交易的情況下,定量的判斷了當前交易的風險之後,覺得風險過大無法承受,那麼最為直接的處理方法就是在滿倉的基礎上相應的降低倉位的大小。在倉位降低之後,對於整體資金而言風險也就隨之降低了。由於倉位本身具有量化、直觀的特性,因此當交易者希望將風險處理到一個特定的水平時,調整倉位是一個比較方便的手段。
需要說明的是,前面已經提到了買和賣是量化交易策略最為基本的組成部分,實際上倉位的設定是根據買賣決策和風險兩個因素共同形成的,不建立在買賣之上的倉位選擇是空洞沒有意義的。此外還有一個更為極端的情況,倉位的正確設定有助於進一步優化策略的整體收益,之後要介紹的凱利公式的意義正在於此。在圖1中由買賣到倉位的箭頭,實際上可以看作是收益、買賣這一個整體部分指向倉位的箭頭。不過在實際使用中,凱利公式所導出的倉位設定往往過於偏激,超過正常風險控制下的最高倉位值,因此倉位仍然與風險的關系更為緊密。
在圖1這個較為鬆散的量化交易策略研發流程中,交易成本是和買賣以及倉位具有同等地位的組成部分。在實際操作中,就是首先基於對收益和風險的判斷得出合適的買賣和倉位選擇,然後在買賣和倉位共同組成的量化交易策略當中考慮交易成本,也就是在建立倉位和退出倉位等操作中扣除所需要承擔的交易成本。隨後再次判斷該量化交易策略所代表的收益和風險情況,只有這兩個因素仍然在接受范圍之內,才能確認這是一個可行的量化交易策略。雖然最後用來執行的組成部分只有買賣和倉位,但是交易成本作為對量化交易策略的一個實際化修正,也是策略研發流程中一個不可或缺的組成部分。
上面提到的對量化交易策略收益和風險情況的判斷,實際上是一個綜合性的評價問題。一個最為重要的參考依據應該是策略在整個交易過程中的凈值走勢,通過對策略凈值走勢的分析,就可以建立起該量化交易策略運行情況的全面判斷。但是凈值走勢本身由於細節過多,因此無法簡單的用來進行策略之間的橫向對比。這時就需要精煉凈值走勢中所包含的信息,選取合適的部分形成量化的評價指標,從而進行量化交易策略的進一步判定。就作者看來,評判一個策略的標准中最重要的仍然是策略在整個交易過程下的收益情況,一個負收益的量化交易策略根本無需考慮其風險即可排除。而當收益為正時,再結合風險的度量進行具體的取捨,就可以直觀的給出量化交易策略是否合格的評判標准了。作者心目中最重要的風險指標是策略凈值的回撤水平,在後面的案例分析中也會重點查看回撤的結果。
於此同時,一些量化交易策略在進行收益和風險情況的判斷時,僅僅針對策略自身的凈值走勢進行研究是不夠的,給出一個合理的基準來進行對比往往是更為有效的判別方法。例如後面的案例中會涉及到的量化選股策略,當交易選擇僅限為對具體的股票進行持倉,而不考慮空倉或者賣空時,選取一個特定的基準進行對比就會是一個更為有效的判別方法。這主要是由於量化選股策略的倉位始終為多頭,因此不論如何配置,策略所持倉位都含有資本資產定價模型中所提到的市場成分。而選股策略本身的意義在於選擇更好的股票、不在於獲取市場收益,因此將市場走勢作為對比、或者在策略收益中剔除掉市場成分就是一個更合理的做法。
上述所有的操作,都需要建立在對歷史數據的分析之上,在量化交易領域當中一般稱之為回溯測試,或者簡稱回測。所謂回溯,也就是將交易的過程在歷史數據上復現一遍,這裡麵包含了一個假設,即歷史數據在量化交易策略中展現出的樣本特徵在未來的交易中依然存在,否則回溯測試就失去了意義。關於這一假設的分析其實在諸多技術分析著作中均有涉及,一般被稱為「歷史會重演」,這里不再繼續展開。不同於傳統技術分析的是,量化交易策略的研發過程更加深入具體,在涉及到策略的參數設定、模型設置等具體問題時,需要採用數量化的方法、也就是最優化等技術手段進行解決。例如如何設置買點和賣點可以使得相應的總體收益最大等等,都是很典型的最優化數學問題,那麼找到合適的最優化技術和演算法並加以應用,就能夠確定量化交易策略的最終形式,用以進行實際交易。
圖1中所展示的是一個較為鬆散的一般性框架,用來總領性的說明量化交易策略的基本研發流程。在具體的策略研發過程中,這個框架經常會因為具體研發設置和策略設置的不同而產生變化。例如當量化交易策略的主要作用不是在時間軸上選擇具體的買賣時點,而是在同一個時間點上對多個資產進行選擇和配置時,圖1中的一些說明就顯得有些含混不清。量化選股策略就是這一類策略中最為常見的形式,因此這里在整體框架不變動的情況下,針對圖1進行了文字上的調整,用以說明量化選股策略的運行框架與研發流程。當然,使用選股策略的框架體系來處理多個資產甚至多個策略的挑選、配置也是可以的,在不復雜的情況下只需要稍作聯想即可。
買賣和倉位雖然是更為通用的說法,但是更適合於描述擇時策略,放在選股策略的研發框架中會顯得比較突兀,因此圖2將買賣換成了選股,倉位則換成了配比,這樣更容易讓讀者領會該研發流程的含義。實際上,對於每一期的選股而言,如果選擇了原先沒有倉位的股票,那麼對應的操作就是買入該股票,如果已經建倉的股票沒有被選入這一期的股票池,那麼對應的操作就是賣出該股票。而配比則是在買賣的基礎上,通過倉位大小的變化來實現具體配置。因此,選股和配比實際上可以算作是買賣和倉位選擇的特殊情況,只是這種說法更為貼合量化選股策略本身。
略有不同的,是風險在量化選股策略研發流程中的具體含義。由於選股策略的倉位操作涉及到多個股票之間的配比問題,因此這里的風險不僅包括單支股票的風險,也涉及到多支股票之間的風險程度,後一種風險一般採用股票收益之間的相關性來進行描述。例如在一般性的最優投資組合理論當中,經常使用協方差矩陣來刻畫整個資產組合的風險水平。雖然從實際情況來看,相關性這一度量方式與風險的直觀感受之間有一定的差距,但是在多資產環境下,一般都將資產間的相關性視為風險的來源之一,這是一個偏學術的、約定俗成的做法。
上面的例子是針對選股策略進行的文字上的變動,實際上量化交易策略研發流程的變化更多來自於各個研發組成部分不同的結合方式。而不同的結合方式,對應的是策略研發過程中不同的目標和需求。例如圖1所介紹的鬆散的研發流程,是在確定好買賣行為和倉位設定之後,再針對實際交易中所產生的交易成本進行二次測試。這樣的做法雖然簡便易行,但是忽視了交易成本本身對於收益的影響,以及更進一步對於買點和賣點的影響。因此,在確定買賣設置的步驟中就考慮交易成本的影響,應該是一個更貼近於實際的研究框架。圖3給出了相應的流程刻畫,如圖所示,在判斷收益因素時,同時考慮交易成本對於收益的影響,從而優化出更為實際的買賣設置。再根據相應的風險控制,結合買賣點的選擇,得出最後的倉位設置。在確定了買賣和倉位這兩個部分之後,就獲得了一個完整的量化交易策略。
圖4給出了一個更緊湊、更貼合實際操作的量化交易策略研發流程。在該流程中,買賣和倉位的設置是同時作為參數進行優化的,優化的目標函數也進行了唯一化,即量化交易策略的風險調整後收益。而在確定需要優化的目標函數時,交易成本也如同上一個研發流程一樣同時被考慮進去,從而保證買賣和倉位優化結果的准確性。毫無疑問,相較於上面所涉及到的研發流程、特別是圖1中較為鬆散的研發流程,該量化交易策略研發流程的各個組成部分更為緊密,因此在優化過程中所產生的與實際操作的偏離也就越小,買賣和倉位設置的准確度也就更高。但是在實際工作中,如果想參照這一流程進行研發,那麼就需要比較強的計算能力,數據量的大小也要達到一定要求,同時優化方法和目標函數的設定要能夠同時覆蓋買賣和倉位的所有參數,因此往往也只有極為簡單的策略思路可以採用這樣的流程框架進行研發。
在實際的量化交易策略相關工作中,研發只是整個工作流程的一部分,還有兩個組成部分需要著重強調。基於此,圖5在圖1所示的研發流程的基礎上給出了一個更為完整的工作流程。如圖所示,需要增加的部分包括處於研發過程之前的數據准備工作以及處於研發過程之後的策略執行工作。這兩項工作與前面所論述的研發流程具有很強的邏輯關聯性與內在依賴性,三者結合起來形成的一個整體,基本上可以涵蓋量化交易策略具體工作的絕大部分內容。
首先論述數據准備的工作,循著圖5中的箭頭可以看到,在量化交易策略的整體工作中,既要為研發過程准備相應的研究數據,也要為策略執行准備相應的實時數據。在研究數據方面,由於尋找合適的量化交易策略需要不斷重復研發流程,因此對於數據的要求更偏重於准確性和覆蓋能力。同時,對數據的清洗和轉換也是一項重點工作,在大部分的數據科學研究、包括量化交易策略的研發當中,數據特徵的合理抽取對於整體效果提升的重要性有時甚至要高於精巧的模型,當然很多時候數據的轉換和模型的構造是相互融合的,針對具體情況應當採取具體的分析和處理。而在策略執行數據方面,則更應該關注於數據獲取的及時性。至於數據的清洗和變換,只需要完全復制研發得到的量化交易策略下的數據准備工作即可。另外,為了保證數據的及時性,最終進行的數據清洗工作對時間消耗存在一定的要求。
然後討論策略執行的工作。策略執行,是在量化交易策略研發完成之後,最終產出實際效能的組成部分。執行時應該遵循盡量貼近研發完成的量化交易策略的原則,與量化交易策略所確定的買賣、倉位等設置盡可能的保持一致,這樣才能最真實的反映出前面量化交易策略的研發結果。同時,策略執行的結果也可以用來反向支持具體的研發流程,通過對策略執行所得到的收益、風險情況的判斷,實時的重新進行研發,對量化交易策略進行修改,從而使得策略能夠及時的得到現實的反饋,增強自身的穩健程度。值得一提的是,後面將要介紹的推進分析是一種模擬策略執行的回溯測試技術,讀者可以在運行推進分析時有限度的了解到量化交易策略實際執行時的種種狀態。
『叄』 量化交易主要有哪些好的策略
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫mysql,asp網路編程語言,以及可以設置成網路伺服器的旗艦版win7操作系統。
『肆』 量化交易是什麼量化交易有哪些優缺點
近些日子,一則“量化交易是什麼?”的問題,引發了廣大網友們的熱議,在網上鬧的沸沸揚揚。那麼,量化交易是什麼呢?量化交易也可以叫自動化交易,就是使用數學模型來自動交易,摒棄了認為主觀的判斷。量化交易的優點是什麼?量化交易的優點就是去除了認為的操作,不會受到情緒的影響,都是拿概率說話。量化交易的缺點是什麼?量化交易的缺點是不懂得炒作熱點,不會分析時事。那麼具體的情況是什麼呢?我來給大家分享一下我的看法。
一.量化交易是什麼量化交易,也叫自動化交易。就是指利用數學的模型,製作出一套能夠穩定盈利的方法,然後讓計算機自動的進行買如何賣出的操作。量化交易模型越好,那麼交易的盈利能力,以及穩定性則是越強。
以上就是我對於這個問題所發表的看法,純屬個人觀點,僅供參考。大家有什麼不同的看法都可以在評論區留言,大家一起討論一下。大家看完,記得點贊,加關注哦。
『伍』 量化交易策略有哪些
01、海龜交易策略
海龜交易策略是一套非常完整的趨勢跟隨型的自動化交易策略。這個復雜的策略在入場條件、倉位控制、資金管理、止損止盈等各個環節,都進行了詳細的設計,這基本上可以作為復雜交易策略設計和開發的模板。
02、阿爾法策略
阿爾法的概念來自於二十世紀中葉,經過學者的統計,當時約75%的股票型基金經理構建的投資組合無法跑贏根據市值大小構建的簡單組合或是指數,屬於傳統的基本面分析策略。
在期指市場上做空,在股票市場上構建擬合300指數的成份股,賺取其中的價差,這種被動型的套利就是貝塔套利。
03、多因子選股
多因子模型是量化選股中最重要的一類模型,基本思想是找到某些和收益率最相關的指標,並根據該指標,構建一個股票組合,期望該組合在未來的一段時間跑贏或跑輸指數。如果跑贏,則可以做多該組合,同時做空期指,賺取正向阿爾法收益;如果是跑輸,則可以組多期指,融券做空該組合,賺取反向阿爾法收益。多因子模型的關鍵是找到因子與收益率之間的關聯性。
04、雙均線策略
雙均線策略,通過建立m天移動平均線,n天移動平均線,則兩條均線必有交點。若m>n,n天平均線「上穿越」m天均線則為買入點,反之為賣出點。該策略基於不同天數均線的交叉點,抓住股票的強勢和弱勢時刻,進行交易。
雙均線策略中,如果兩根均線的周期接近,比如5日線,10日線,這種非常容易纏繞,不停的產生買點賣點,會有大量的無效交易,交易費用很高。如果兩根均線的周期差距較大,比如5日線,60日線,這種交易周期很長,趨勢性已經不明顯了,趨勢轉變以後很長時間才會出現買賣點。也就是說可能會造成很大的虧損。所以兩個參數選擇的很重要,趨勢性越強的品種,均線策略越有效
05、行業輪動
行業輪動是利用市場趨勢獲利的一種主動交易策略其本質是利用不同投資品種強勢時間的錯位對行業品種進行切換以達到投資收益最大化的目的。
06、跨品種套利
跨品種套利指的是利用兩種不同的、但相關聯的指數期貨產品之間的價差進行交易。這兩種指數之間具有相互替代性或受同一供求因素制約。跨品種套利的交易形式是同時買進和賣出相同交割月份但不同種類的股指期貨合約。主要有相關商品間套利和原料與成品之間套利。
跨品種套利的主要作用一是幫助扭曲的市場價格回復到正常水平;二是增強市場的流動性。
07、指數增強
增強型指數投資由於不同基金管理人描述其指數增強型產品的投資目的不盡相同,增強型指數投資並無統一模式,唯一共同點在於他們都希望能夠提供高於標的指數回報水平的投資業績。為使指數化投資名副其實,基金經理試圖盡可能保持標的指數的各種特徵。
08、網格交易
網格交易是利用市場震盪行情獲利的一種主動交易策略,其本質是利用投資標的在一段震盪行情中價格在網格區間內的反復運動以進行加倉減倉的操作以達到投資收益最大化的目的。通俗點講就是根據建立不同數量.不同大小的網格,在突破網格的時候建倉,回歸網格的時候減倉,力求能夠捕捉到價格的震盪變化趨勢,達到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一種,是股指期貨的跨期套利(Calendar Spread Arbitrage)即為在同一交易所進行同一指數、但不同交割月份的套利活動。
10、高頻交易策略
高頻交易是指從那些人們無法利用的極為短暫的市場變化中尋求獲利的計算機化交易,比如,某種證券買入價和賣出價差價的微小變化,或者某隻股票在不同交易所之間的微小價差。這種交易的速度如此之快,以至於有些交易機構將自己的「伺服器群組」安置到了離交易所的計算機很近的地方,以縮短交易指令通過光纜以光速旅行的距離。
『陸』 量化交易都有哪些主要的策略模型
隨著量化交易的發展,單一技術指標的策略會面臨失效的問題。所以現在的策略都是復合型的。
經典量化交易策略(包括價值投資、技術指標、配對輪動、機器學習等)、研究型文章等
『柒』 如何識別優秀的量化交易策略
最快的方式就是用模擬賬號去模擬
看一下收益就知道策略好或者不好
『捌』 量化交易主要有什麼經典的策略
您好
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
『玖』 量化投資策略的優勢有哪些
量化投資策略的優勢有哪些?
量化投資策略有如下五大方面的優勢,主要包括紀律性、系統性、及時性、准確性、分散化等。
(1)紀律性:嚴格執行量化投資模型所給出的投資建議,而不是隨著投資者情緒的變化而隨意更改。紀律性的好處很多,可以克服人性的弱點,如貪婪、恐懼、僥幸心理,也可以克服認知偏差,行為金融理論在這方面有許多論述。
(2)系統性:量化投資的系統性特徵主要包括多層次的量化模型、多角度的觀察及海量數據的觀察等等。多層次模型主要包括大類資產配置模型、行業選擇模型、精選個股模型等等。多角度觀察主要包括對宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度的分析。
(3)及時性:及時快速地跟蹤市場變化,不斷發現能夠提供超額收益的新的統計模型,尋找新的交易機會。
(4)准確性:准確客觀評價交易機會,克服主觀情緒偏差,妥善運用套利的思想。量化投資正是在找估值窪地,通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會。與定性投資經理不同,量化投資經理大部分精力花在分析哪裡是估值窪地,哪一個品種被低估了,買入低估的,賣出高估的。
(5)分散化:在控制風險的條件下,充當准確實現分散化投資目標的工具。分散化也可以說量化投資是靠概率取勝。這表現為兩個方面,一是量化投資不斷的從歷史中挖掘有望在未來重復的歷史規律並且加以利用,這些歷史規律都是有較大概率獲勝的策略。二是依靠篩選出股票組合來取勝,而不是一個或幾個股票取勝,從投資組合理念來看也是捕獲大概率獲勝的股票,而不是押寶到單個股票上。