Ⅰ 檢驗異方差性的方法有哪些
一、檢驗異方差性的方法有:
1、圖示檢驗法:相關圖分析;殘差圖分析。
2、Goldfeld - Quandt 檢驗法。
3、懷特(white) 檢驗。
4、帕克檢驗( Park test ) 和格里奇檢驗( Glejser test)。
Ⅱ 檢驗異方差性的方法有哪些
檢驗異方差性的方法有:
1)圖示檢驗法。①相關圖分析。②殘差圖分析。
2)Goldfeld - Quandt 檢驗法。
3)懷特(white) 檢驗。
4)帕克檢驗( Park test ) 和格里奇檢驗( Glejser test)。
Ⅲ 檢驗異方差性的方法有哪些
關於異方差性檢驗的方法大致有:圖示檢驗法、Goldfeld - Quandt 檢驗法、White檢驗法、Park檢驗法和Gleiser檢驗法。事實也證明,實際經濟問題中經常會出現異方差性,這將影響回顧模型的估計、檢驗和應用。因此在建立計量經濟模型時應檢驗模型是否存在異方差性。
異方差性是相對於同方差而言的。所謂同方差,是為了保證回歸參數估計量具有良好的統計性質,經典線性回歸模型的一個重要假定:總體回歸函數中的隨機誤差項滿足同方差性,即它們都有相同的方差隨機誤差項具有不同的方差,則稱線性回歸模型存在異方差性。
(3)馬忠強期貨擴展閱讀
測量誤差對異方差性的作用主要表現在兩個方面:一方面,測量誤差常常在一定時間內逐漸積累,誤差趨於增加,如解釋變數X越大,測量誤差就會趨於增大;另一方面,測量誤差可能隨時間變化而變化,如抽樣技術或收集資料方法的改進就會使測量誤差減少。
不僅在時間序列上容易出現異方差性,利用平均數作為樣本數據也容易出現異方差性。收入較高和較低的人是少數的,大部分人的收入居於較高和較低之間,在以不同收入組的人均數據作為樣本時,由於每組中的人數不同,觀測誤差也不同。