1. 黄金分割率的具体应用有哪些!
斐波那契序列的特点中有这样一个特点:随着数列项数的增加,前一项与后一回项之比越逼近黄金答分割0.6180339887…….我们把0.6180339887……近似等于0.618,这个数就称为黄金分割率.以后的历史发展,斐波那契数就和黄金分割紧密联系起来,以致把0.618称为PHI(读音为菲).
不光是斐波那契数由这样的规律,凡是满足广义的斐波那契序列的数,他们之间都满足黄金分割.
2. 黄金分割的推广拓展
设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面的两个数之和。例如:1,1,2,3,5,8,13,21,34,55,89,144·····这个数列为“斐波那契数列”,这些数被称为“斐波那契数”。
经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割是无理数,所以只是不断逼近黄金分割。 所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由五角形的顶角是36度可得出黄金分割的数值为2sin18度(即2*sin(π/10))。
将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形。
3. 黄金分割应用的实例
1.所有让人感到赏心悦目的矩形,包括电视屏幕、写字台面、书籍、门窗等,其短边与长边之比大多为0.618。
2.甚至连火柴盒、国旗的长宽比例,都恪守0.618比值。
3.在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;
4.二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。
5.最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。
6.内含“黄金分割比”的五角星形状也非常耐人寻味,世界上有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上上的“星”都是五角形的星。
7.希腊雅典的巴特农神庙就是一个很好的例子, 8.达·芬奇的《维特鲁威人》符合黄金矩形。
9.《蒙娜丽莎》中蒙娜丽莎的脸也符合黄金矩形,
10.《最后的晚餐》同样也应用了该比例布局
12.法国巴黎圣母院的正面高度和宽度的比例是8∶5,它的每一扇窗户长宽比例也是如此。
12.除了国外著名的巴黎圣母院、胡夫金字塔、雅典帕德嫩神庙、纽约联合国大楼、印度泰姬陵具有黄金分割外,在我国境内远近闻名的故宫同样具有,最突出表现在故宫“门”的设计上。
13.位于上海黄浦江畔的东方明珠塔,设计师有意将上球体选在 295 米之间的位置,这个位置恰好在塔身 5 比 8 的地方,这 0.618 的比值,使塔身显得非常协调、美观。
14.当今世界最高建筑之一的加拿大多伦多电视塔,举世闻名的法国巴黎埃菲尔铁塔,都是根据黄金分割的原则来建造的。
4. 黄金分割法则的应用
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做菲波那契数列,这些数被称为菲波那契数。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为金法,17世纪欧洲的一位数学家,甚至称它为各种算法中最可宝贵的算法。这种算法在印度称之为三率法或三数法则,也就是我们现在常说的比例方法。
其实有关黄金分割,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为黄金分割。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。 黄金分割法来源自黄金分割率,是计算强阻力位或强支撑位的一种方法,即人们认为指数或股价运动的阻力位或支撑位会与黄金分割率的一系列数字有关,可用这些数字来预判点位。
黄金分割的一般方法
黄金分割中最重要的数字是:
0.382 0.618
1.382 1.618 2
其具体应用是:
1.在上升行情掉头向下时,可用近期上升行情的涨幅乘以以上第一行数字,再加上近期上升行情的起点,得到此次下跌的强支撑位。
如2007年10月17日以来的调整,可视为是对2005年6月6日以来的大牛市行情的调整,上证指数起点为2005年6月6日的998点,高点为2007年10月16日的6124点,则用黄金分割法得到:
(6124-998)×0.618+998=4166
(6124-998)×0.382+998=2956
则4166点和2956点附近可能成为本轮调整的强支撑位,这也正是某些机构报告中强调4200点附近会是本轮调整的第一道强支撑位的依据。
2.在下降行情掉头向上时,可用近期下跌行情的低点乘以以上第二行数字,得到此次上涨的强阻力位。
如若预期上证指数2007年10月17日以来的调整的最低点为4200点,而调整到位后将演绎上升行情,则用黄金分割法得到:
4200×1.618=6796
4200×1.382=5804
则6796点和5804点附近可能成为上证指数本轮调整的强支撑位,这也正是某些机构报告中强调6800点附近会是本轮调整的强阻力位的依据。
黄金分割法只是提供了一些不容易被突破的阻力位或支撑位,投资者需要确认该阻力位或支撑位是否被突破后再做投资决策,而不是一到阻力位就卖出或一到支撑位就买进。黄金分割率所用于预测的周期越长,准确性往往越高。
初级帝纳波利点位法
国际投资大师乔尔·帝纳波利(Joe.
Dinapoli)创造的帝纳波利点位,其理论基础和出发点就是黄金分割率。正好借此了解一下初级帝纳波利点位法。
如图1所示,假如从 A 下行到 B点,然后折返到 C 点 ,然后从C点继续下行,那它会在哪里止跌呢?
首先把A到B当中的距离乘以0.382,能够从 C 出发找到 COP;
第二就是把 A 到 B 距离乘以0.618,从C 向外扩展找到 OP;第三把 A 到 B垂直距离乘以 1,在 C 向外扩展得到XOP。这样就获得了下跌途中的三个支撑位。
如:图1 初级帝纳波利点位法的一般原则
不妨用日经指数走势印证一些初级帝纳波利点位法的适用性。如图2所示,日经指数曾经走到39000点的高度,然后在1992年的时候,一直下跌到了14000点,到1996年回升到22000点。现在提的问题就是在日本的股市当中,什么时候是一个安全的买入点。
图2 用初级帝纳波利点位法预测日经指数根据刚才说到的三个数可以找到ABC三个点,就算出来是XP支撑位在指数达到6800点[22710-(39930-14220)×0.618]的时候,即日经指数会在6800点找到支撑位,结果在2003年日经指数到达6800点。当然,到底是在具体哪个点获利是需要经验的。而要找到
ABC 三点的位置,
也需要花一段时间才能学会。另外,用初级帝纳波利点位法重复以上逻辑,可得到2007年10月17日以来调整的底部为4691.38点。
任何从低位起步的股票可以分为五个阶段:
①耐心持有待突破。在1.191线内购股最安全,为股票的盘整期,总有突破的那一天,在此价位内甚至也不必作差价,耐心持有为第一位。第一黄金线位:是股票的盘整期。股价一旦突破1.191线,一定会上摸到1.382线,您一定要抛。否则会回落,首次冲高抛掉,而回调也会到1.191线为止,您一定要买回来。
②高抛低吸取黄金。在1.191~1.382可作差价,高抛低吸,不必害怕,此区域一般不会套您,****获利不是很大,且在拉升途中,****自己也会高抛低吸来降低自己的持股成本,对自己熟悉的股票多做差价,也要敢于作差价。而1.382线是强阻力位,强阻力位有很长时间的盘整,而一旦有效突破,股价就很难再跌破1.382线,最好在1.191价+(1.382价-1.191价)×0.618位抛掉。
③虎口拔牙要小心。在1.382~1.618也可作差价,不过是虎口拔牙,应加倍小心,最好在1.382价+(1.618价-1.382价)×0.618位抛掉,从高位下落的股票不要在0.809位抢反弹,而要在0.618位,但涨10%必须抛掉,不要恋战。
④高高在上买不宜。在1.618上的股票,意味着从低位已上涨62%,无特别好消息,不要购在1.618线附近的股票。在该线附近盘整越久,****出货的慨率越大,加倍小心。
⑤风光无限在险峰。在1.809上的股票,就可能是无限风光了,有倍率上涨的机会。一般不要理会倍率黄金线的使用,知道就可。
黄金线买卖基本法则
①0.618法,来至自然的法则,运用于股票买卖很准。以阶段性的低点(1.000)作黄金线,分为:1.191、1.382、1.500、 1.618、1.809等,每一条线位就是阻力位,一般只要有行情,每个股票都会冲破1.191线上1.382线,部分股票上1.618线,少数上 1.809线,极少股票突破1.809线而更高。把阶段性的顶点(1.000)作黄金线,分为:0.809、0.618、0.500、0.382、 0.191,每一条线都是强支承位,强势股,大多在0.809线止跌反弹,弱势股到0.618线或0.382线等,据黄金线炒作,比较安全。从高位下落不到0.618线附近,不要作为黄金线的起点。没有一底比一底高的股票低点,不要作黄金线起点。
②大部分股票还是应以原底部点作起始点,毕竟黄金线的原理是以****可能的持仓成本为标准,若从高位经几波下跌,又多次探底,且一底比一底高方可用最近的低点为底。不要用一月内的低点为底。
③在短期内,就站上1.618线的股票不买。不过,为了少放走大黑马,对于手头有的,且刚上1.618上的股票,还是要多看其量的变化(移动成本指标),在1.618线上的盘整时间长久(还有原底部盘整时间),主力进出指标等等。
④短期高位巨幅下落,不到0.618线不买。虽有可能放跑大黑马但为资金安全,也要常坚持这点。 古今中外,养生目的只有一个,就是希望健康长寿,而养生之法却有千百种,各有各的养生经验与决窍。我的养生之道用的是“黄金分割法”,既能养身又能修心,使生命与“自然”和谐。
原来,在人体结构中,到处都存在着“黄金分割”现象。如正常人肚脐以下的长度与身高之比接近0.618,上肢与下肢的长度比值也接近0.618。更有意思的是在人体生理功能中,人体最感舒适的外界气温约为23℃,这正接近人体正常体温37℃的“黄金分割值”22.8℃。人的视觉中最感舒服的矩形,其宽与长之比也为0.618。人在精神最愉快时,脑电波频率下限(8赫兹)与上限(12.9赫兹)之比亦为0.618。这都说明0.618的“黄金数”常意味着人体的最佳状况。
人是大自然的产物,人要想健康长寿,就应尽量与“自然”和谐。几十年的从医从文生活体验,使我意识到“黄金分割法”养生是一种科学的“自然养生法”,并自觉地将此法运用到生活的吃、穿、住、行等方面,使养生纳入“自然”大道。
在饮食方面,我一般每餐只吃六七成,不过于饱胀,更不暴饮暴食。食物搭配大概分为七分蔬菜、三分肉食;六分精食、四分粗粮;尽量做到不偏食、不挑剔,使营养结构合理。在穿戴方面,寒冷季节,我从不穿得太多,仅使自己感到有七分温暖,三分寒意,以锻炼身体的抗寒能力,从而少患感冒和其它疾病。正如俗话所说:三分寒七分饱,少患疾病身体好。
在居室方面,夏天酷暑时,室内空调温度宜约23℃,使身体处于舒适状态,以保证正常生理功能和良好的睡眠。在动静结合的健身方面,我常以六分静养(包括睡眠)以求心静神怡,四分动养以求活血通经。此外,在心理健康方面,我力求自己遇事不要急躁、浮躁、烦躁和暴躁;凡事不要过分,不要偏激,不要极端,不要绝对。以“中庸”之道,用0.618的“魔尺”定方寸,心态平和,顺其自然,胸怀广阔,知足常乐。
“黄金数”是大自然赋予人类的“神数”,也是人类养生健身的妙数。用“黄金分割法”养生,使我尝到了生命的乐趣和健康的甜头。我坚信,社会越是现代化,人就越要回到“自然”中去。
5. "黄金分割"有什么应用呢
斐波那契数列与黄金分割关系
黄金分割是我们在生活中接触得比较多的数学美学问题,有了它生活的色彩就更显多彩:建筑师们早就懂得使用黄金分割比了.在公元前3000年建成的埃及法老胡夫的金字塔和公元前432年建成的雅典帕特农神庙就采用了这个神奇之比,因此它的整个结构以及它与外界的配合是那样的和谐美观.我们现在的窗户大小,一般都按黄金分割比制成.在艺术领域里更是神奇.众所周知的维纳斯女神像,她优美的身段可说是完美无缺,而她上下身的比正是黄金分割比.芭蕾舞演员顶起脚尖,正是为了使人体的上下身之比更符合黄金比.在1483年左右完成的"圣久劳姆"画,作画的外框长方形也符合这个出色的黄金分割比.像二胡,提琴这样的弦乐器,当乐师们把它们的码子放在黄金分割比的分点上时,乐器发出的声音是最动人美丽的.
"黄金比"的精确值是0. 学习过一元二次方程的同学都会解方程x^2-x-1=0,它的一个正根是.这个数就是黄金分割比.
数列 前项比后项 与黄金分割的差的绝对值
1 1.000000000000000000 0.381966011250105152
2 0.500000000000000000 0.118033988749894848
3 0.666666666666666667 0.048632677916771819
5 0.600000000000000000 0.018033988749894848
8 0.625000000000000000 0.006966011250105152
13 0.615384615384615385 0.002649373365279464
21 0.619047619047619048 0.001013630297724199
34 0.617647058823529412 0.000386929926365436
55 0.618181818181818182 0.000147829431923334
89 0.617977528089887640 0.000056460660007208
144 0.618055555555555556 0.000021566805660707
233 0.618025751072961373 0.000008237676933475
377 0.618037135278514589 0.000003146528619741
610 0.618032786885245902 0.000001201864648947
987 0.618034447821681864 0.000000459071787016
1597 0.618033813400125235 0.000000175349769613
2584 0.618034055727554180 0.000000066977659331
4181 0.618033963166706530 0.000000025583188319
6765 0.618033998521803400 0.000000009771908552
10946 0.618033985017357939 0.000000003732536909
17711 0.618033990175597087 0.000000001425702238
28657 0.618033988205325051 0.000000000544569797
46368 0.618033988957902001 0.000000000208007153
75025 0.618033988670443186 0.000000000079451663
121393 0.618033988780242683 0.000000000030347835
196418 0.618033988738303007 0.000000000011591841
317811 0.618033988754322538 0.000000000004427689
514229 0.618033988748203621 0.000000000001691227
832040 0.618033988750540839 0.000000000000645991
1346269 0.618033988749648102 0.000000000000246747
2178309 0.618033988749989097 0.000000000000094249
3524578 0.618033988749858848 0.000000000000036000
5702887 0.618033988749908599 0.000000000000013751
9227465 0.618033988749889596 0.000000000000005252
14930352 0.618033988749896854 0.000000000000002006
24157817 0.618033988749894082 0.000000000000000766
39088169 0.618033988749895141 0.000000000000000293
63245986 0.618033988749894736 0.000000000000000112
102334155 0.618033988749894891 0.000000000000000043
165580141 0.618033988749894832 0.000000000000000016
267914296 0.618033988749894854 0.000000000000000006
433494437 0.618033988749894846 0.000000000000000002
发现规律没有?
奇数项与偶数项的比值大于黄金分割数,偶数项与奇数项的比值小于黄金分割数
An/(An+1)当n趋向于无穷大时等于黄金分割比
好象还可以证明
6. 黄金分割应用的实例有哪些
7. 黄金分割的应用(举例)
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
|..........a...........|
+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -
|......b......|..a-b...|
通常用希腊字母 表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为根号5+1/2
黄金分割数是无理数,前面的1024位为:
1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...
8. 黄金分割率在军事有什么应用
人们发现,使用黄金分割率制造出来的兵器,用起来会更加得心应手。据说,起初的步枪枪把和枪身的长度比例很不科学,存在不便抓握和瞄准的缺点。
直到第一次世界大战的时候,美国的远征将军阿尔文·约克对步枪进行了改造,把枪把和枪身的长度比例调整为黄金分割率1:0618,才把这个问题解决。
不仅在武器上是这样,在交战时也要运用到这个道理。假设有两个国家交战,其中一个国家被对手消灭掉了三分之一以上的兵力,那么毫无疑问,这个国家必然输掉战争。
(8)黄金分割扩展应用扩展阅读:
注意事项
众所周知,军队大都是分梯队展开地面攻势的,因此,一般来说,第一梯队的兵力约占总进攻兵力的2/3,第二梯队兵力则占总兵力的三分之一,在第一梯队的兵力中,担任主攻任务的兵力约占第一梯队总兵力的三分之二,担任助攻任务的兵力约占第一梯队总兵力的三分之一。
历史经验还告诉我们,如果有人胆敢打破这一规律,那么他指挥的军队十有八九会遭遇失败。例如马其顿王国与波斯王国之间著名的阿贝拉战争,亚历山大大帝的马其顿军队把大流士国王的波斯军队的左军和中军的结合部作为主攻点,而这个点恰好是波斯军队整个防线的黄金分割点。