导航:首页 > 股市基金 > 量化交易学什么语言好

量化交易学什么语言好

发布时间:2021-07-01 17:22:12

A. 学习量化选择Python还是R比较好

对于想从事数据行业的人和数据工作者来说,是学习R还是 python,哪个工具更实用一直被大家争论。python 和R是统计学中两种最流行的的编程语言,R的功能性主要是统计学家在开发时考虑的(R具有强大的可视化功能),而 Python 因为易于理解的语法被大家所接受。
在这篇文章中,我们将重点介绍R和 Python 以及它们在数据科学和统计上地位之间的差异。
关于R的介绍
Ross Ihaka 和 Robert Gentleman 于 1995 年在S语言中创造了开源语言R,目的是专注于提供更好和更人性化的方式做数据分析、统计和图形模型的语言。
起初R主要是在学术和研究使用,但近来企业界发现R也很不错。这使得中的R成为企业中使用的全球发展最快的统计语言之一。
R 的主要优势是它有一个庞大的社区,通过邮件列表,用户贡献的文档和一个非常活跃的堆栈溢出组提供支持。还有 CRAN 镜像,一个用户可以很简单地创造的一个包含R包的知识库。这些包有R里面的函数和数据,各地的镜像都是R网站的备份文件,完全一样,用户可以可以选择离你最近的镜像访问最新的技术和功能,而无需从头开发。
如果你是一个有经验的程序员,你可以不会觉得使用R可以提高效率,但是,你可能会发现学习R经常会遇到瓶颈。幸运的是现在的资源很多。
关于 Python 的介绍
Python 是由 Guido van Rossem 创建于 1991 年,并强调效率和代码的可读性。希望深入的数据分析或应用统计技术的程序员是 Python 的主要用户。
当你越需要在工程环境中工作,你会越喜欢 Python。它是一种灵活的语言,在处理一些新东西上表现很好,并且注重可读性和简单性,它的学习曲线是比较低的。
和R类似,Python 也有包,pypi 是一个 Python 包的仓库,里面有很多别人写好的 Python 库。
Python 也是一个大社区,但它是一个有点比较分散,因为它是一个通用的语言。然而,Python 自称他们在数据科学中更占优势地位:预期的增长,更新颖的科学数据应用的起源在这里。
R和 Python:数字的比较
在网上可以经常看到比较R和 Python 人气的数字,虽然这些数字往往就这两种语言是如何在计算机科学的整体生态系统不断发展,但是很难并列进行比较。主要的原因是,R仅在数据科学的环境中使用,而 Python 作为一种通用语言,被广泛应用于许多领域,如网络的发展。这往往导致排名结果偏向于 Python,而且从业者工资会较低。
R如何使用?
R 主要用于当数据分析任务需要独立的计算或分析单个服务器。这是探索性的工作,因为R有很多包和随时可用的测试,可以提供提供必要的工具,快速启动和运行的数量庞大几乎任何类型的数据分析。R甚至可以是一个大数据解决方案的一部分。
当开始使用R的时候,最好首先安装 RStudio IDE。之后建议你看看下面的流行包:
Python 如何使用?
如果你的数据分析任务需要使用 Web 应用程序,或代码的统计数据需要被纳入生产数据库进行集成时你可以使用 python,作为一个完全成熟的编程语言,它是实现算法一个伟大的工具。
虽然在过去 python 包对于数据分析还处于早期阶段,但是这些年已经有了显著改善。使用时需要安装 NumPy/ SciPy 的(科学计算)和 pandas(数据处理),以使 Python 可用于数据分析。也看看 matplotlib,使图形和 scikit-learn 机器学习。
不同于R,Python 有没有明确的非常好的 IDE。我们建议你看看 Spyder 以及 IPython 网站,看看哪一个最适合你。
R和 Python:数据科学行业的表现
如果你看一下最近的民意调查,在数据分析的编程语言方面,R是明显的赢家。
有越来越多的人从研发转向 Python。此外,有越来越多的公司使用这两种语言来进行组合。
如果你打算从事数据行业,你用好学会这两种语言。招聘趋势显示这两个技能的需求日益增加,而工资远高于平均水平。
R:优点和缺点
优点
可视化能力强
可视化通常让我们更有效地理解数字本身。R和可视化是绝配。一些必看的可视化软件包是 ggplot2,ggvis,googleVis 和 rCharts。
完善的生态系统
R 具有活跃的社区和一个丰富的生态系统。R包在 CRAN,Bioconctor 的和 Github 上。您可以通过 Rdocumentation 搜索所有的R包。
用于数据科学
R 由统计学家开发,他们可以通过R代码和包交流想法和概念,你不一定需要有计算机背景。此外企业界也越来越接受R。
缺点
R比较缓慢
R 使统计人员的更轻松,但你电脑的运行速度可能很慢。虽然R的体验是缓慢的,但是有多个包来提高的r性能:pqR,renjin,FastR, Riposte 等等。
R不容易深入学习
R 学习起来并不容易,特别是如果你要从 GUI 来进行统计分析。如果你不熟悉它,即使发现包可能会非常耗时。
Python:优点和缺点
优点
IPython Notebook
IPython Notebook 使我们更容易使用 Python 进行数据工作,你可以轻松地与同事共享 Notebook,而无需他们安装任何东西。这大大减少了组织代码,输出和注释文件的开销。可以花更多的时间做实际的工作。
通用语言
Python 是一种通用的语言,容易和直观。在学习上会比较容易,它可以加快你写一个程序的速度。此外,Python 测试框架是一个内置的,这样可以保证你的代码是可重复使用和可靠的。
一个多用途的语言
Python 把不同背景的人集合在一起。作为一种常见的、容易理解,大部分程序员都懂的,可以很容易地和统计学家沟通,你可以使用一个简单的工具就把你每一个工作伙伴都整合起来。
缺点
可视化
可视化是选择数据分析软件的一个重要的标准。虽然 Python 有一些不错的可视化库,如 Seaborn,Bokeh 和 Pygal。但相比于R,呈现的结果并不总是那么顺眼。
Python 是挑战者
Python 对于R来说是一个挑战者,它不提供必不可少的R包。虽然它在追赶,但是还不够。
最终你该学习什么呢:
由你决定!作为一个数据工作者,你需要在工作中选择最适合需要的语言。在学习之前问清楚这些问题可以帮助你:
你想解决什么问题?
什么是学习语言的净成本?
是什么在你的领域中常用的工具?
什么是其他可用工具以及如何做这些涉及到的常用工具?

B. 想学量化交易的C++编程,有没有比较好的参考书可看

下面这个可以参考一下,具体还要看个人的情况。

我觉得应该根据你的工作需要或者说你的发展方向而定。基本上两大类吧:C/C++和Java。比如,如果你要做企业级应用的你应该学习Java和C#;如果你想做嵌入式,那么应该学好C语言;其他情况下,在你不知道要做什么之前你可以选择学习C/C++。学会这两大类中的一类,对于你学习其他语言都将是比较轻松,包括脚本语言,动态语言„„呵呵,这里想就自己的学习经历和情况给大家一个建议,仅供参考。
1、我的入门是从学习C语言开始的(其实课程是C++),这是我们学校的公共课,我上课比较认真(虽然老师讲得很差,而且一段时间后,我就发现自己的基础掌握比她好,当然理解深度没她好),因此,我认为对于完全没有基础的人而言,听别人讲比较容易入门。当时的教材是学校自己编的,挺烂的。
建议一(以C/C++为例),对于刚想进入编程的人(就是从来都没有接触过编程的人),最好是听课的方式(自己看的话估计要很慢,而且很痛苦),可以找视频或者培训等。C语言推荐入门教材:谭浩强的C语言,最新版是第三版,不过第二版应该也可以了(蓝色的)。说明一下:坚决不同意直接看K&R的《The C programming language》,这本书绝对不是初学者可以看懂的,里面讲语法的并不多,语法都是合在程序里面讲。不过这本书非常好,入门以后一定要看的一本书。
当然可以从C++直接入门,C++之父强烈推荐从C++直接入手。C++推荐入门教材:钱能的C++(红色的,清华大学出版),这本书第一版不是ISO C++,不过比较经典,作者现在也出了第二版了,第二版好像不是太好。国外的最好的入门教材据说是:《Acclerated C++》作者是Koenig和Moo夫妇,非常厉害。他们的著作还有《c陷阱与缺陷》《c++沉思录》。《Acclerated C++》这本入门的书我没有看过,我觉得还是先找本国内的书好好看,看的差不多了,国外的经典书籍随便看就会觉得很有味道,否则你可能会很受打击。入门的书至少要看两三遍(要彻底理解哦 ):)。如果是C++,我建议后面类的部分至少要理解三到五遍。说明一下,c++模板的部分可以先不用看,如果有兴趣的话,等把c++学的差不多了,我觉得可以把模板、STL、泛型编程结合起来学习,这个又是一个很大的工作量了,又得下很大的功夫。所以说,C++博大精深啊。
建议二、学习过程中要结合简单的算法,像冒泡还有类似c语言程序百例这样的小例子做做;更进一步应该做点大一点的项目,最好是控制台程序。或者你已经着手学习win32、MFC或linux,你也可以结合平台做点小的项目。
2、第一阶段是最苦的,接下来相对就知道应该怎么去学习了。这时候假设你已经有了扎实的c++基础。这是你可以选择也应该选择发展方向了,做企业级应用,还是系统开发,嵌入式设计或者游戏开发„„ 那时我其实并没有考虑那么多,因为我不是学计算机的,因此我就把参加一些计算机之类的考试当作学习目标。我当时其实C++语言基础已经很不错了,但是上机实践很少(那时我没有电脑),因此参加省计算机二级,全国计算机三级和全国计算机四级考试,结果上机都没有通过。我很郁闷,二级的时候是我不知道怎么样进那个DOS界面把题目调出来,三级的时候是很快就编好了,也通过运行了,可是成绩出来却不及格,四级的时候是编好了,可能是我那题目比较难,好像用了两次循环,结果那破机器竟然承受不了。后来一乱就毁了(当然主要是上机太少了)。不过我那些上机都没有去补考。二级和三级的时候是自恃水平已经远远超过考试要求了,四级的时候则因为自己已经通过高级程序员考试,觉得补考上机好像没必要。(我高程和四级都是在2003年考的)。
建议三:定位学习方向,并好好学习计算机基础知识。在你还不确定学习方向,或者你还在大学本科期间,那么我认为应该先把计算机的基础知识好好学习一下。我认为计算机必学的基础课程而且要精学——首先是数据结构,其次是操作系统、软件工程,数据库。这四门课不管你将来想从事哪个方向的基本上都会用到。当然,有时间的话,其他基础课都是应该掌握的,离散数学、组成原理、体系结构、网络、编译原理甚至跨学科的。方向是很重要的,因为知识其实是无限的,一个小小的领域就够你研究很久了。本科生可能还没有什么方向的感觉,但是到了研究生你一定要清楚自己到底想要做什么,要往哪个方面发展,不要盲目学,瞎学乱学,否则最后可能看似什么都会,其实什么都不会。
我也曾经学习过Java一段时间,这篇文章既然是谈编程语言的入门学习,我也简单说一说。因为有了比较C++扎实的语言基础,所以Java学起来比较轻松。我先找了国内一本薄薄的教材很快看了一遍(几乎都理解,但是只看了一遍),空闲的时间配合清华张孝详老师的java视频。以后其实才算我真正要开始入门JAVA的学习,我用了是《core java》中文第六版(本来想用候捷翻译的第二版的《Thinking in Java》,发现被同学弄丢了),这本书我差不多用了20天才把里面的知识都搞懂,当然包括程序风格的模拟,最重要的时我把有关GUI编程的那三章里面的程序例子几乎可以默写出来(当然,那是因为我理解了,其实这样就变成了我的知识了),里面的API我也记得差不多了。(说明:Java里面的GUI编程没什么用处了,建议大家先跳过,GUI不是Java的长处,如果以后需要的话再查手册或者再记忆学习)。
其实学习了C++以后,学习Java是比较容易了,但是建议不要两种都学啦,他们的用途是不一样的,你应该熟悉其中一种,更重要的是熟悉其应用领域所需要的专业知识甚至平台,以及使用他们的企业,有创业计划的还应该考虑一下他们的应用领域,最重要的是思考他们的潜在的应用领域。
对于初级的学习就讲到这里,接下去的学习其实都是高级部分,先不介绍了,因为:一、我自己都还没有学懂,这里乱吹会误人子弟。 二、高级东西的学习很多,有很多选择,又需要很多繁琐的知识,可能也一下子没办法讲清楚。

C. 的基本功,量化投资学习哪门编程语言才好

D. 量化投资用什么编程语言研发策略好呢

么以下我就以程序语言的角度来回答
当然如果已经会了某些语言,那你可以使用熟悉的语言去找网上的学习资源会比较快
如果没有特别熟悉的语言,或者是愿意多学一种非常好用的语言
我的建议是学习Python

我从以下几点来分别说明

平台资源

国内外使用Python做云端回测以及运算的免费平台相当的多,例如有 宽客在线,发明者量化,优矿, 等等不胜枚举,可以使用平台的支持以及社区的互相帮助来学习

容易学习

综合以上所说,"目前的环境底下" 我推荐Python.(推荐直接下载 Anaconda的集成开发环境)

E. 做量化交易选择什么语言好呢

量化交易,就是把人能够识别的信息变成数字,输入给计算机程序处理,辅助或者代替人类的思考和交易决策。

初学者碰到的第一个问题就是工具的选择。首先大部分交易员本来不会写程序,选择任何一个语言进行策略开发,都有不小的学习成本。更重要的是,选择了一门语言,接下来开发环境、人员招聘、数据接口与平台、甚至同类人群之间的交流、遇到问题后的支持,都跟着被“套牢”。所以从一开始就必须慎重对待。

先给出答案:对于还没有确定一套固定量化环境的,建议用Python。

量化交易员面临的大致选择有:C/C++/java/C#/R/Matlab/excel等。我们从以下几个方面考虑简单做个对比。

注意:这里假设你团队规模在50人以下。

1 学习成本和应用的广泛性

C、C++的特点是速度最快,但要想用好,必须对计算机底层架构、编译器等等有较好的理解,这是非计算机专业的人很难做到的,对于做量化交易来说更是没有必要。

Java本来是SUN的商业产品,有学习成本和体系的限制,也不适合。

Excel面对GB级别的数据无能为力,这里直接排除。

Python、R和Matlab学起来都简单,上手也快,可以说是“一周学会编程”。但R和Matlab一般只用来做数据处理,而Python作为一门强大的语言,可以做任何事,比如随时写个爬虫爬点数据,随时写个网页什么的,更何况还要面对处理实时行情的复杂情况。

2 开始做量化分析后,哪个用起来碰到问题最少,最方便省事?

用历史数据的回测举例。假设我们有2014年所有股票的全年日线,现在我们想看看600001的全年前10个最高股价出现在什么时候。python世界有个强大的pandas库,所以一句话就解决问题:

dailybar[dailybar [‘code’]==‘600001’].sort_values([‘close’].head(10)

R/Mathlab等科学语言也可以做到。

C/C++没有完备的第三方库。如果为了做大量的计算,要自己实现、维护、优化相应的底层算法,是一件多么头疼的事。

Python从一开始就是开源的,有各种第三方的库可以现成使用。这些底层功能库让程序员省去了“造轮子”的时间,让我们可以集中精力做真正的策略开发工作。

3 现在我们更进一步,要做实时行情分析和决策

以A股的入门级L1数据为例,每3秒要确保处理完3000条快照数据,并完成相应的计算甚至下单。这样的场景,C和C++倒是够快了。所以行情软件比如大智慧、同花顺等客户端都是使用高效率的语言做的,但像客户端那样的开发量,绝大部分量化交易机构没能力也没必要去做吧。

python的速度足够对付一般的实时行情分析了。其底层是C实现的,加上很多第三方的C也是C实现,尽管其计算速度比不上原生C程序,但对我们来说是足够啦。

4 quant离职了,他的研究成果怎么办

Python是使用人群最多、社区最活跃的语言之一,也是最受quant欢迎的语言之一。如果你是老板,你能更容易地招聘到优秀人材,享受到python社区带来的便利。

附几个量化中常用的python库:

- Pandas:

天生为处理金融数据而开发的库。几乎所有的主流数据接口都支持Pandas。Python量化必备。

- Numpy:

科学计算包,向量和矩阵处理超级方便

- SciPy:

开源算法和数学工具包,与Matlab和Scilab等类似

- Matplotlib:

Python的数据画图包,用来绘制出各类丰富的图形和报表。

PS: Python也是机器学习领域被使用最多的语言之一。像tensorflow、scikit-learn、Theano等等对python都有极好的支持。

F. 量化交易如何入门要学习多长时间

很好入门,多学多看。
学习量化交易,一定要理解它的风险性从何而来。
首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。
第二种风险是交易员操作失误。这同时也牵扯到第三种风险,系统软件风险,每个交易员在系统中都有相应的交易权限,包括数量、金额。
有个业内资深人士带路会事半功倍,尤其对金融爱好者而言,一些理解上的细微偏差,都可能导致整体概念上的错误认识。
比如我就是通过资深人士带着入门的。除了学习量化收益,还学了很多投资理财方面的知识,有各种理财偏好,每个群体对应了不同的投资类型……推敲过后,我选择了无界财富,因为他们风控模式可以看出,比如国有金融机构风控、银行存管这些,比较稳健的方式。
所以说,他不仅是学我习量化交易的前辈,还是我理财的入门引导人,他多次提醒我们不要盲目跟风,以自己的风险承担能力来选择。如果偏好稳健的方式,同样可以选择无界财富这类稳健平台作为入门。

G. 用python做量化交易要学多久

5个月。

python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。

python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。

(7)量化交易学什么语言好扩展阅读:

Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密 e正则logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。

H. 量化交易有哪些好的学习方式

数学能力。至少要包括概率统计基础、微积分、线性代数、线性回归、优化理论等知识。当然,数学专业出身的人士肯定可以满足条件,然而一般的理工科或者认真学习过的也都基本满足要求,有欠缺的地方也可以花一点时间自学补上。编程方面。编程类语言C++、java、R、MATLAB、Python等这些语言或者软件会用一种就OK,最好是比较熟练的,有过深厚的代码经验的;另外要了解数据库和SQL语言,因为量化交易需要建立和维护数据库,并用SQL从数据库中查询数据,从而对海量数据进行管理和分析。

阅读全文

与量化交易学什么语言好相关的资料

热点内容
高杠杆之殇华为员工落泪事件 浏览:712
房贷金融服务费合不合法 浏览:5
11月钢管价格会回落吗 浏览:18
伊利股东刘春海 浏览:590
青岛银行理财到期后几天到账 浏览:635
银行汇率有关的实证论文 浏览:645
建华科技股票 浏览:922
光大银行推出的理财产品怎么样 浏览:152
未来金融服务行业 浏览:509
ndf与即期汇率之差 浏览:261
贵金属icp检测机 浏览:240
6月23日英镑汇率 浏览:487
销售贵金属经验分享 浏览:343
杠杆收购融资财务模式 浏览:871
佣金和技术服务 浏览:96
湖北融资租赁管理办吧 浏览:208
信托银监会证监会 浏览:752
微店分销佣金 浏览:970
美国期货指数杠杆率 浏览:801
报一淘设置多少佣金 浏览:553