导航:首页 > 股市基金 > 操作雷达指标

操作雷达指标

发布时间:2021-07-01 21:43:45

⑴ 同花顺主力雷达怎么用呀

主力雷达:通过国际清洗技术,独创的财富数据系统。完整地把握机构、私募、散户的资金流向,成本分布等情况,而且通过主力能量、主力占盘比等清晰地知道一只股票的主力操盘程度、筹码分布情况,对主力动向一目了然;
操盘雷达:精准的多空决策系统。自创的主力操盘轨迹、麒麟趋势、资金生命线、波段擒龙、傻瓜交易等独特技术指标,精准指导操作。其中主力操盘轨迹——“红色持股、蓝色持币”,直接提示了股票的买卖时机和价格;麒麟趋势明确提示投资者股票的顶和底,资金生命线清晰地告诉投资者股票是机构操作还是散户扎堆;
资讯雷达:利用国际先进的数据抓取技术,精选并深入分析政策、经济数据、个股资讯和机构研报等数据,掌握市场导向、挖掘热点板块;
选股雷达:利用云计算技术,综合政策、资金、机构研报、技术分析等多种手段,挖掘市场热点股票;
异动雷达:实时监控主力盘中的买卖行为,第一时间发现主力正在拉升的投资机会。

⑵ 益学堂推出的操盘雷达里的主力K线指标具体是什么意思

股市中过早进场往往承担较大的风险,而后知后觉者却又只能喝汤甚至被套,主力K线指标明确把握股市脉搏,用三种颜色的K线表示资金量大小,黄色K线:超大资金的流入(超强)、绿色K线:大单进场(强)、粉色K线:小单进场(次强)。
在绩优股票底部的横盘期间,庄家资金一般会以分批上场的形式出现,而主力K线目的就是让主力抬轿,规避了再次下跌或者被套的风险。这个小小的软件还是不错的。

⑶ 股票软件上的主力雷达指标原理是什么

股票软件中显示的买卖量是指主动性的买单量和主动性的卖单量,他们之和就是当日的成交总量.
复杂点的就是:绿线为短期趋势线,黄线为中期趋势线,白线为长期趋势线。
1、主力买卖与主力进出配合使用时准确率极高。
2、当底部构成发出信号,且主力进出线向上时判断买点,准确率极高。
3、当短线上穿中线及长线时,形成最佳短线买点交叉形态(如底部构成已发出信号或主力进出线也向上且短线乖离率不大时)。
4、当短线、中线均上穿长线,形成中线最佳买点形态(如底部构成已发出信号或主力进出线也向上且三线均向上时)。
5、当短线下穿中线,且短线与长线正乖离率太大时,形成短线最佳卖点交叉形态。
6、当短线、中线下穿长线,且是主力进出已走平或下降时,形成中线最佳卖点交叉形态。
7、在上升途中,短、中线回落受长线支撑再度上行之时,为较佳的买入时机。
8、指标在0以上表明个股处于强势,指标跌穿0线表明该股步入弱势。

⑷ X波段雷达的雷达波段指标

雷达波段代表的是发射的电磁波频率(波长)范围,非相控阵单雷达条件下,高频(短波长)的波段一般定位更准确,但作用范围短;低频(长波)的波段作用范围远,发现目标距离大。S波段雷达一般作为中距离的警戒雷达和跟踪雷达。X波段雷达一般作为短距离的火控雷达。

⑸ 如何根据雷达探测性能参数 设计雷达

雷达的工作原理

雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离公式为:S=CT/2

其中S为目标距离,T为电磁波从雷达发射出去到接收到目标回波的时间,C为光速

雷达测定目标的方向是利用天线的方向性来实现的。通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。

测定目标的运动速度是雷达的一个重要功能,雷达测速利用了物理学中的多普勒原理:当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。

雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。
其中,作用距离是指雷达刚好能够可靠发现目标的距离。它取决于雷达的发射功率与天线口径的乘积,并与目标本身反射雷达电磁波的能力(雷达散射截面积的大小)等因素有关。威力范围指由最大作用距离、最小作用距离、最大仰角、最小仰角及方位角范围确定的区域。

雷达的技术指标与参数很多,而且与雷达的体制有关,这里仅仅讨论那些与电子对抗关系密切的主要参数。
根据波形来区分,雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达。常规脉冲雷达周期性地发射高频脉冲。相关的参数为脉冲重复周期(脉冲重复频率)、脉冲宽度以及载波频率。载波频率是在一个脉冲内信号的高频振荡频率,也称为雷达的工作频率。

雷达天线对电磁能量在方向上的聚集能力用波束宽度来描述,波束越窄,天线的方向性越好。但是在设计和制造过程中,雷达天线不可能把所有能量全部集中在理想的波束之内,在其它方向上在在着泄漏能量的问题。能量集中在主波束中,我们常常形象地把主波束称为主瓣,其它方向上由泄漏形成旁瓣。为了覆盖宽广的空间,需要通过天线的机械转动或电子控制,使雷达波束在探测区域内扫描。
概括起来,雷达的技术参数主要包括工作频率(波长)、脉冲重复频率、脉冲宽度、发射功率、天线波束宽度、天线波束扫描方式、接收机灵敏度等。技术参数是根据雷达的战术性能与指标要求来选择和设计的,因此它们的数值在某种程度上反映了雷达具有的功能。例如,为提高远距离发现目标能力,预警雷达采用比较低的工作频率和脉冲重复频率,而机载雷达则为减小体积、重量等目的,使用比较高的工作频率和脉冲重复频率。这说明,如果知道了雷达的技术参数,就可在一定程度上识别出雷达的种类。

雷达波段的分类和种类介绍:

事实上有两种雷达波段的划分系统。老版本的划分规则是根据波长来划分,在二战时制定的。它的规则是这样的:
最初的搜索雷达使用23厘米的波长。他就是人们常听说的 L-波段 (英文Long的缩写).
当更短一些的波长雷达出现时(10cm), 这种雷达通常被人们叫做S-波段, S 是比标准的L波段短的意思(Short).
当火控雷达雷达出现时 (3cm 波长),它被人们叫做 X-波段雷达,因为生活中X通常用来指定和标示地点 .
人们对于搜索雷达和火控雷达的折衷波长的雷达叫做C-波段 (C 是英文单词 Compromise折衷的意思).
德国人发展了更短波长的雷达,它的波长是1.5厘米.德国人叫它K-波段雷达 (K 是 Kurtz, 德语中短的意思).
但不幸的是,由于德国人特有的日尔曼式的严谨,他们选择雷达频率是完全通过水蒸气试验方式求得的,致使K-波段雷达在雨天和雾天时无法使用. 战后人们选定频率略大于 K 波段 的波段为Ka波段(Ka 是 K-above大于K的意思)和频率略小于K 波段 的波段为Ku波段 (Ku是 K-under小于K的意思).
最后,最早的使用米波长的雷达人们叫它P-波段雷达 (P代表英文单词 Previous原先的意思).
但是这个系统十分复杂和繁琐,很难使用. 因此它被合理的系统替代了。新的系统就是按波长的长--短从A排到K。
老的 P-波段 = 新的 A/B 波段
老的 L-波段 = 新的 C/D-波段
老的 S-波段 = 新的 E/F 波段
老的 C-波段 = 新的 G/H 波段
老的 X-波段 = 新的 I/J 波段
老的 K-波段 = 新的 K 波段

现在的雷达波段如下:

D,波长0.3-0.15米 1GHz~2GHz
E,波长0.15-0.1米 2GHz~3GHz
F,0.1-0.075米 3GHz~4GHz
G,0.075-0.05 4GHz~6GHz
H,0.05-0.0375米 6HGz~8GHz
I,0.0375-0.03米 8Ghz~10GHz
J,0.03-0.015米 10GHz~20GHz
K,0.015-0.0075米 20GHz~40GHz

所谓长波的波长是3000米到30000米,频率是10kHz~100kHz,属于地波,沿地表面传播,用于远程通讯与无线广播还可以,用于做雷达,实在有些不妥。估计是与超视距预警雷达搞混了,超视距雷达是利用短波波段不能穿透电离层,而被反射的原理制造的(电离层对于不同波长的电磁波表现出不同的特性。实验证明,波长短于10m的微波能穿过电离层,波长超过3000m的长波,几乎会被电离层全部吸收,对于中波、中短波、短波,波长越短,电离层对它吸收得越少而反射得越多)所以一般是使用短波波段做预警雷达(波长50m~10m,频率6MHz~30MHz) 。

而相控阵只是说明雷达天线的形式,而雷达的波长是由发射信号的工作频率决定的,这是两个基本不相关的概念。
目前,相控阵的频率主要取决于组件所能达到的频率,有源相控阵目前能够达到X波段,无源相控阵可以达到毫米波频段。

决定一部雷达探测距离的重要因素就是其波长。在平均功率相等的情况下,波长越长的雷达,其探测距离越远。

由于火控雷达需要对导弹进行控制引导,所以波长不会太大,"宙斯盾"系统的雷达波长接近10厘米,相信我国的170舰的火控雷达波长不会超过这个值。因此,如果没有功率强大的发射机,其探测距离可能会受到相当的限制。

以探测飞机为例,飞机调整外形以及现用RAM,只能有效对抗工作频率在0.2~29GHz的厘米波雷达。当雷达波长与被照射目标特征尺寸相近时,在目标反射波与爬行波之间产生谐振现象,尽管没有直接的镜面反射也会造成强烈的信号特征。例如,某些陆基雷达的长波(米级波)辐射能在飞机较大的部件(平尾或机翼前缘)上引起谐振。在波长很短(毫米波)的雷达照射下,则飞机的不平滑部位相对波长来说显然增多,而任何不平滑部位都会产生角反射并导致RCS增大。大多数RAM都含有“活性成分”,经雷达波照射后其分子结构内部产生电子重新排列,分子振荡的惯性会吸收一部分入射能量。但是,照射波的波长越长,分子振荡越慢而吸波效果越不明显。雷达跳出目前隐身技术所能对抗的波段,将使飞机的隐身性能大大降低或失效。

另外,目前的雷达波隐身技术主要是针对微波雷达的,飞机的红外辐射可以减弱并限制在一定的方位角内但却不能完全消除。发展可见光或接近可见光波段的探测器,以及提高红外传感器的探测性能,也可作为探测隐身飞机的措施及手段。长波雷达可以对付隐身飞机的外形调整设计及现用的RAM,使得隐身飞机外形设计与RAM涂层厚度有难以实现的过高要求。近年来,一些国家重新重视研制长波雷达。目前发展很快的长波雷达是超地平线雷达(OTH),其工作波长达10~60m(频率为5~28MHz),完全在正常雷达工作波段范围之外。这种雷达靠谐振效应探测大多数目标,几乎不受现有RAM的影响。

国外还非常重视发展毫米波雷达,目前已有可供实用的毫米波雷达。但是,频率越低波束越难集中,而频率越高波束传播损耗越大。美国空军曾在1990年有关反隐身对抗的总结报告中称,甚高频(VHF)雷达(频率160~180MHz、波长1.65~1.90m)在探测低飞目标或对付人工干扰时存在严重问题;OTH雷达提供的跟踪和定位数据不够精确;毫米波雷达(频率约为94GHz)探测概率不高。所以多应用于制导和地面人员搜索警戒雷达。

⑹ 航海雷达指标

目视航标又称视觉航标,是供直接目视观测的固定或者浮动的助航标志。视觉航标具有易辨认的形状与颜色,可装灯器及其它附属设备。视觉航标具有设备简单、维护方便、投资小、使用直观等优点,广泛设置于海区和内河,是一种最重要、最基本、数量最多的助航标志。

视觉航标包括灯塔、灯桩、立标、灯浮标、浮标、灯船、系碇设备和导标。视觉航标是人们视觉可直接观察到的助航标志,因此,常用其标身的形状、颜色和顶标供航海人员白昼观察;而用灯质,即用灯光颜色、灯光节奏和灯光周期作为夜间识别的特征。目前,海事机关负责维护的海上干线航标中视觉航标已达到2137座。

音响航标是指依靠产生的音响传递信息以引起航行人员注意其概位的助航标志。音响航标,在能见度不良的天气或在水中,发出具有一定识别特征的音响信号,使船舶知道其概略方位,起警告危险作用。 根据传播介质,音响航标可分为空中音响航标和水中音响航标两种。

空中音响航标以空气作为传播介质,是使用最早、最普遍的音响航标。空中音响航标包括有雾钟、雾锣、雾角、雾哨、雾炮和雾号。

水中音响航标以水为传播介质,常用的有水中钟、水中定位系统和水中震荡器。水中音响航标使用极少。
无线电航标包括雷达反射器(Radarreflector)、雷达指向标(Radarbeacon)、雷达应答器(Radarresponder)、无线电.指向标(Radiobeacon)、罗兰A(LoranA)、罗兰C(LoranC)、台卡(Decca)、奥米加(Omega)、子午仪卫星导航系统(TRANSIT)、全球导航星系统(GLONASS)、全球定位系统(GPS)和差分全球定位系统(DGPS)。

导航的基本含义是引导运载体(船舶、飞机与车辆等)运行,利用无线电技术对运载体运动进行引导,称为无线电导航。能够完成一定的无线电导航任务的技术装置总体,称为无线电导航系统。
在船舶导航技术发展初期,人们只是凭视力观测岸上和岛上的目标或天空中星体的相关参数来确定船舶的位置,后来出现了罗经、计程仪、天文钟和六分仪等普通船舶导航设备。用这些普通导航设备进行观测,往往在条件和能见距离或精度上要受到限制。
无线电导航系统是利用无线电波传播特性测量目标的相关参数,一般来说,不受气候条件 影响,因而它是在复杂气象条件及能见度不良情况下的一种很有效的导航方法,可以在近、中、远距离上较顺利地完成导航任务。

全球定位系统(GlobalPositioningSystem),简称GPS,是美国1973年开始研制的卫星定位系统,属于双频测距的全球卫星定位系统。它可在全球、全天候情况下,为陆海空用户提供连续、实时、高精度的三维位置、三维速度和时间信息。
1973年12月,美国国防部批准了GPS的研制计划。研制计划分三个阶段实施:第一个阶段(1973年~1979年)为系统可行性验证阶段;第二个阶段(1979年~1984年)为系统研制与试验阶段;第三个阶段(1985年开始)为系统实用组网阶段,并于1993年全面组网实用。
系统由空间星座、地面监控和用户设备三部分组成。

GPS目前的工作卫星为27颗

2004年7月,GPS在轨工作卫星又少了一颗,目前只有27颗工作卫星,整个星座的卫星序号为1-32,现在空缺的为2号、12号、16号、30号和32号。在A、B、C、D、F、E六个轨道面内,只有D和F轨道面内布有6颗星,其余的A轨道面内有四颗星(A5、A6空缺),B轨道面内只有两颗星(在B3、B4)位置上,C轨道面内有五颗星(C6空缺),E轨道面内有四颗星(E5、E6空缺)。27颗工作卫星中,有九站使用的是铯钟,其余的使用铷原子钟。

欧洲和美国签署GALILEO-GPS协议

世界新闻(2004年6月29日):欧盟和美国长达四年的跨大西洋争辩终于结束,在GALILEO-GPS方面达成协议,这对推进、形成两个卫星导航系统的结合及其应用无疑会起到积极作用。协议是由欧洲委员会副主席佩拉西和美国国务卿鲍威尔两人签署的,允许每个系统单独工作,相互间互不干扰。

佩拉西说,这个协议允许欧洲的GALILEO成为世界民用和商用卫星导航标准,有可能为所有用户提供水平最好的服务。

漫长的四年的艰巨谈判所取得的结果,对于全世界的GALILEO和GPS用户而言是个好消息。协议确认,两个星座的服务完全兼容,能实现互操作,能联合使用GPS和GALILEO,设备制造更为容易和便宜。协议对GALILEO频率结构也作了规定,关键的是对任何一方的干扰信号(如有必要,即在战区),在不冲击整个系统的前提下,也作了允诺。

GALILEO现在事实上已经成为GNSS批量市场上公开信号的世界标准。GALILEO可以并不仅仅是GALILEO的用户群,而是数以百万计的GPS用户也能马上进入。这意味着卫星无线电导航的所有用户,用单个接收机便可实现对单个系统的使用,也可同时使用两个系统。

GALILEO除了是笫一个专门的民用系统外,它还一个特征是其商用性质。与美国的协议能很快地将GALILEO引入到全球的所有的用户段(批量市场和专业市场)。市场研究的可能分析认为:至2010年全球的接收机容量可达30亿个,每年的收入达2500亿欧圆,在欧洲创造的高品位的职业岗位15万个。

协议指出,系统部署的费用的三分之二(14亿欧圆)是来自于市场经济方式,三分之一(7亿欧圆)来自于政府。这样的良好前景增强了三个预选的公司群体的竞争,它们都希望赢得系统运营的特许权。

这种竞争的结果是由GJU来掌管,年底成定局,进人计划的后续阶段,为2005年最终达成特许权合同开辟了道路。

这一协议使系统性能指标的最终确定成为可能,这对GALILEO迅速投入运营是至关重要的。在目前的开发阶段后(两颗卫星已在建造,在2005年底发射,其后不久另两个卫星也将入轨),有望在2008年前部署其它的24颗卫星和相关的地面站。届时,系统将投入工作。

GPS提供两种定位服务,即精确定位服务(PPS)和标准定位服务(SPS)。
精确定位服务(PPS)将提供水平为17.8m(2dRMS)和垂直为27.7m(2口)的预测定位精度,三维中的每维为0.2m/s(2口)的速度精度,90ns的时间精度。精确定位服务(PPS)采用P码调制双频发射和接收。它仅提供于美国和其盟国的军事、联邦政府的用户及有限的获准的民用用户。
标准定位服务(SPS)采用C/A码调制、单频发射和接收。它公开提供于民用、商用和其他用户。尽管标准定位服务(SPS)可提供优于30m(2dRMS)的定位精度,但出于美国国家的利益,美国国防部人为地引人选择可用性(SA)使其水平定位精度降低至100m(2dRMS),垂直定位精度为156m(2a),时间精度为175ns。
由于精确定位服务(PPS)不公开提供,而标准定位服务(SPS)又人为地降低了定位精度,致使需要高精度定位的民用用户使用差分技术,提高标准定位服务(SPS)的定位精度,从而形成了差分全球定位系统,简称DGPS。DGPS简单的工作原理:把已知的测定点作为差分基准点,在差分基准站安装基准GPS接收机,并用GPS接收机连续地接收GPS信号,经处理,与基准站的已知位置进行比对,求解出实时差分修正值,以广播或数据链传输方式,将差分修正值传送至附近GPS用户,以修正其GPS定位解,提高其局部范围内用户的定位精度

⑺ 雷达有哪些指标

为了对抗电子干扰,现在雷达一般是变频雷达多称跳频雷达,首先是它的跳频范围。跳频规律,二波段,米波、厘米波,毫米波,微波 三辐射强度,以及探测距离

⑻ 雷达指标公式改为选股公式

{OK.测试通过}
LC:=REF(CLOSE,1);
VARB:=SMA(MAX(CLOSE-LC,0),7,1)/SMA(ABS(CLOSE-LC),7,1)*100;
VARC:=SMA(MAX(CLOSE-LC,0),13,1)/SMA(ABS(CLOSE-LC),13,1)*100;
VARD:=BARSCOUNT(CLOSE);
底部雷达:=(VARB< 20 AND VARC< 25 AND VARD> 50)*30;
RSI:=SMA(MAX(CLOSE-LC,0),6,1)/SMA(ABS(CLOSE-LC),6,1)*100;
主力:=EMA( (CLOSE-MA(CLOSE,7))/MA(CLOSE,7)*480,2);
散户:=EMA( (CLOSE-MA(CLOSE,11))/MA(CLOSE,11)*480,7);
(CROSS(主力,散户) AND 主力<-10) OR CROSS(100,底部雷达) OR (CROSS(18,RSI)AND 散户<-20 AND 底部雷达);

⑼ 如何正确操作雷达发现和确定sart的位置

雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作
FMCW测速测距原理
,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。
测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。
测量速度原理是雷达根据自身和目标之间有相对运动产生的频率多普勒效应。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

阅读全文

与操作雷达指标相关的资料

热点内容
高杠杆之殇华为员工落泪事件 浏览:712
房贷金融服务费合不合法 浏览:5
11月钢管价格会回落吗 浏览:18
伊利股东刘春海 浏览:590
青岛银行理财到期后几天到账 浏览:635
银行汇率有关的实证论文 浏览:645
建华科技股票 浏览:922
光大银行推出的理财产品怎么样 浏览:152
未来金融服务行业 浏览:509
ndf与即期汇率之差 浏览:261
贵金属icp检测机 浏览:240
6月23日英镑汇率 浏览:487
销售贵金属经验分享 浏览:343
杠杆收购融资财务模式 浏览:871
佣金和技术服务 浏览:96
湖北融资租赁管理办吧 浏览:208
信托银监会证监会 浏览:752
微店分销佣金 浏览:970
美国期货指数杠杆率 浏览:801
报一淘设置多少佣金 浏览:553