⑴ 斐波那契數列的公式是什麼
這個數列是由13世紀義大利斐波那契提出的的,故叫斐波那契數列。該數列由下面的遞推關系決定:
F0=0,F1=1
Fn+2=Fn + Fn+1(n>=0)
它的通項公式是 Fn=1/根號5{[(1+根號5)/2]的n次方-[(1-根號5)/2]的n次方}(n屬於正整數)
補充問題:
菲波那契數列指的是這樣一個數列:
1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等於前兩項之和
它的通項公式為:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根號5】
很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。
該數列有很多奇妙的屬性
比如:隨著數列項數的增加,前一項與後一項之比越逼近黃金分割0.6180339887……
還有一項性質,從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1
如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什麼64=65?其實就是利用了菲波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前後兩塊的面積確實差1,只不過後面那個圖中有一條細長的狹縫,一般人不容易注意到
如果任意挑兩個數為起始,比如5、-2.4,然後兩項兩項地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你將發現隨著數列的發展,前後兩項之比也越來越逼近黃金分割,且某一項的平方與前後兩項之積的差值也交替相差某個值
僅供參考。
⑵ 斐波那契Fibonacci數列的通項公式
斐波那契數列的通項公式
⑶ 數學黃金分割的兩個公式是什麼
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"菲波那契數列",這些數被稱為"菲波那契數"。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
菲波那契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)-→0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
⑷ 什麼是斐波那契數列公式是什麼
斐波那獎數列:
1,1,2,3,5,8,13,21,34…
其規律是從第三項起,每一項都是前兩項的和.用遞推公式表達就是:
a1=a2=1,
an=an+1十an-2(n>=3)
⑸ 黃金分割數列公式是什麼
⑹ 斐波那契數列通項公式是什麼
這個數列是由13世紀義大利斐波那契提出的的,故叫斐波那契數列。該數列由下面的遞推關系決定:
F0=0,F1=1
Fn+2=Fn + Fn+1(n>=0)
它的通項公式是 Fn=1/根號5{[(1+根號5)/2]的n次方-[(1-根號5)/2]的n次方}(n屬於正整數)
補充問題:
菲波那契數列指的是這樣一個數列:
1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等於前兩項之和
它的通項公式為:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根號5】
很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。
該數列有很多奇妙的屬性
比如:隨著數列項數的增加,前一項與後一項之比越逼近黃金分割0.6180339887……
還有一項性質,從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1
如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什麼64=65?其實就是利用了菲波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前後兩塊的面積確實差1,只不過後面那個圖中有一條細長的狹縫,一般人不容易注意到
如果任意挑兩個數為起始,比如5、-2.4,然後兩項兩項地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你將發現隨著數列的發展,前後兩項之比也越來越逼近黃金分割,且某一項的平方與前後兩項之積的差值也交替相差某個值