Ⅰ 怎樣從廢電子產品中提取貴金屬
這是個提純復工藝
是根據各種貴金制屬的化學反應來進行的
因為你的問題比較單一所以給你個建議
網路查詢你想提純的貴金屬物質,融化於什麼化學物質,而什麼化學品可以回收該貴金屬物質。
比如:黃金融化於比例後的鹽酸與硝酸組合化學水,而含有黃金的化學水可以用某物質回收成黃金灰,之後熱化後可以還原成貴金屬金!
滿意請採納
Ⅱ 貴金屬火化提煉黃金如何變黃色
貴金屬里含鉛較多一般這時候是黑色的金屬塊,就要涉及到吹鉛,將吹鉛後的黃金放入陶杯中爐溫加到能使黃金融化,再不斷加入綠六氨和硼砂將黃金中的雜質提出,也可更具純度反復提純直到999純金。黃金的本色就是黃的。,,望採納
Ⅲ 貴金屬提純
貴金屬是指金,銀和鉑系元素(釕,銠,鈀,鋨,銥,鉑)共八種金屬元素。內它們的化學性質容不活潑,自然界常以游離態單質存在,主要通過鹼性氧化熔融法來溶解它們的礦物再利用形成含氧酸鹽和復雜配離子時溶解度差異來分離
Ⅳ 廢舊金屬是怎樣提煉黃金的
提煉黃金有許多的方法,我們今天就講其中的強酸分離法。顧名思義,就是用酸性極強的物質將黃金分離出來。強酸分離法按不同的酸來分,可以分為三種:
一、硝酸分離法。將濃硝酸倒入燒杯中,將電路板,CPU等剪碎,放到燒杯中。將燒杯放到燒杯架上,用酒精燈加熱。通過過濾,就能得到片狀黃金。此方法優點是操作簡單,缺點是硝酸腐蝕性大,易傷人,會產生有毒氣體。
二、王水分離法。王水的配置方法為硝酸一份,鹽酸三份。王水配置好後,將待提煉物體放進去,等反應結束後,過濾,然後進行加熱,最後,放入銅片,進行置換。此方法同樣簡單,但是缺點是回收率低,因為有不同的物質在裡面,提煉困難。
三、硫酸雙氧水分離法。首先按照一比一的比例將硫酸和雙氧水混合,將待提煉物體放入。靜止反應結束後,得到的顏色為黃色的物體就是黃金。
此方法的優點是得到的黃金純度高,反應快速,易過濾。缺點是成本高昂,會產生不易處理的廢酸。
二手手機舊電腦和手機電池中含有眾多金屬,回收後可以提煉出金、銀、銅、鈷、鋰和其他貴重金屬,再次用於工業生產:
據調查,從金礦中挖出的1噸金礦石平均只能生產5克黃金,而一噸廢棄的手機能夠提煉出150-200克以上的黃金、100公斤銅、3公斤銀以及其他金屬。可見,廢舊手機電腦的的確確是座金礦啊!
事實上,電腦手機回收之後不僅可以做提煉金屬處理,還可以進行二次銷售和再生製造。
以二手手機回收平台換換優品為例,其分級處理方式十分環保,提升了手機再利用的各組件分解、處理、再生能力,有效地提高了電子資源的循環利用率,為深加工產業模式提供了行業模板。
Ⅳ 火法冶煉提銀,鉛沉不下來
問題太粗糙,不好回答。
你的原料雖什麼,提銀採用什麼工藝?配渣了嗎?
Ⅵ 採用濕法工藝從高硫物料中提取貴金屬
提煉過程:首先要進行分解,然後將有貴金屬含量的進行提煉,提煉一般有濕法、火法或者電解法,企業一般會選擇濕法,該工藝除了具有投資少、生產周期短、易於操作、金產品穩定達標等優點外,還克服了其它溶金工藝環境污染嚴重的缺點,因而先後被許多黃金生產廠家所採用。該工藝的產品穩定、達標。
金的沉澱可選用不同的還原劑從浸金溶液中沉澱金,如亞硫酸鹽、二氧化硫、硫酸亞鐵、氯化亞錫、草酸等。還原產生的金多呈砂狀和海綿狀。金粉經凈化、乾燥處理後鑄錠,得到符合各種質量和規格要求的金產品。
Ⅶ 如何將廢電路板煉出的銅錠中提煉出貴金屬
一種精煉貴金屬的方法,該方法所包括的步驟為,用四分法將含有該種貴金屬的礦料與已知量的某種賤金屬一起冶煉成一種已知貴金屬濃度的合金,然後將賤金屬溶於酸中,使貴金屬以固體形式分離出來.該方法以用來精煉金為佳,同時所用的酸為硝酸,其後再同鹽酸進行第二次酸處理。
《廢棄電器電子產品回收處理管理條例》
第一章總則
第一條為了規范廢棄電器電子產品的回收處理活動,促進資源綜合利用和循環經濟發展,保護環境,保障人體健康,根據《中華人民共和國清潔生產促進法》和《中華人民共和國固體廢物污染環境防治法》的有關規定,制定本條例。
第二條本條例所稱廢棄電器電子產品的處理活動,是指將廢棄電器電子產品進行拆解,從中提取物質作為原材料或者燃料,用改變廢棄電器電子產品物理、化學特性的方法減少已產生的廢棄電器電子產品數量,減少或者消除其危害成分。
(7)火法提純貴金屬擴展閱讀:
設備優點:
1.採用了先進的機械粉碎、高壓靜電分離新工藝。粉碎、解離後,進行金屬物和非金屬物的分選,純度高;
2.關鍵技術是將各種廢舊線路板的專用粉碎解離設備有機的結合起來,在生產過程中達到較大的節能效果,且實現了很高的金屬分離率;
3.處理每噸廢舊線路板單位能耗僅為國內同類產品的1/2左右;單套設備的每小時處理量高達1頓以上
4.其售價僅為國內外同類設備的1/5—1/3,且銅的回收率比同類生產廠家高出3%--5%。
5.綜合性能好,對電腦板,計算機板,電視機板及其它線路控制板有獨特的效果。對含電容器件的各種線路板回收同樣有兼融性。
6.本生產線是風選型產品的升級換代產品,比風選型耗電量減少,且無噪音,人工少自動化程序高,效率提高,同時佔地面積更小,是廢舊線路板回收利用到目前最理想的生產線。
Ⅷ 怎樣從礦石中提取鉑、金、銀、銠貴金屬
如果是礦石中的貴金屬,含量一般都比較低,不宜直接用王水溶解。
可採用火法或濕法富集礦石中的貴金屬,再使用硝酸提取銀,王水提取鉑、金,熔爐的方法提取銠。如有疑問可發郵件交流[email protected]
Ⅸ 求從電子廢棄物中提取貴金屬
1.1 物理方法
機械法的常規步驟有:拆卸、破碎、分選和金屬的後續處理
1.2 化學方法
1.2.1火法冶金
主要有焚燒熔出工藝、高溫氧化、熔煉工藝、浮渣技術、電弧爐燒結工藝等
1.2.2 濕法回收
傳統濕法冶金技術(如浸出、溶劑萃取、離子交換、沉澱、還原或電積等)及若干新工藝(如電化學技術和聯用工藝)等。近些年來,濕法回收技術中用於提取貴金屬的主要是氰化法和溶劑萃取法。
氰化法(鹼浸法) 採用直接從原料中浸出特定金屬,即對磨細的電子廢棄物用氰化鈉溶液浸泡並通入空氣,加入生石灰或氫氧化鈉調節pH值,使金粒溶解於溶液中。溶液分離後用鋅絲置換,得
沉澱並用酸洗得粗金。氰化法提取黃金收率高,達90%以上,成本較低,設備簡單。缺點是氰化物毒性大
溶劑萃取法是用於貴金屬萃取的一種常用方法。萃取法一般包括萃取和反萃取。萃取法的研究
通常大多集中於萃取劑的選擇和萃取條件的優化。常用的萃取劑有:陰離子交換萃取劑I有報道
指出,利用含三異辛胺(N235)的陰離子交換萃取體系從廢舊電子線路板中提取銅,得到了99.06%的硫酸銅晶體。中性含磷萃取劑:如磷酸三丁酯(TBP),可從氰化液中選擇萃取金 ,具
有很高的載金能力。中性含硫萃取劑I如硫醚RSR),用於鉑族金屬的萃取。中性含氧萃取劑:
如用仲胺醇萃取劑N2125自鹽酸介質中萃取金,金的萃取率達97.50% ;再如用甲基異丁酮(MIBK)萃取劑從含金、鉑、,鈀的貴液中萃取金,萃取率可達99% 以上 ]。鰲合萃取劑:如噻吩甲醯三氟乙醯基丙酮(1-rA)和肟類萃取劑(LIX)等。前者已被成功用於從固液基質中萃取鑭系和錒
系金屬¨。。;後者據文獻報道ll¨,用LIX79萃取劑從含Fe(Ⅱ)、Cu(I)、Ni(Ⅱ)、Ag(I)和zn(Ⅱ)(NaCN=1000 mg/L)的溶液中分離萃取Au(I),可達到90% ~95% 的萃取率。有機羧酸:如近年研究出的仲壬基苯氧基乙酸¨ 等。環酯類石炭酸萃取劑:特別適於金的萃取,實驗中金的萃取率可高達99%[1 。胺類萃取劑:據報道Ll ,採用四元氨鹽萃取劑(ODMBAC)從鹽酸介質中萃取Au(Ⅲ),萃取率達95% 以上。其他萃取劑還有如璜酸萃取劑、大環多元醚類萃取劑以及用於協同萃取的萃取劑等。
2.2 生物法
利用細菌浸取金等貴金屬是20世紀80年代開始研究的用於提取低含量物料中貴金屬的新方法。
2.3 液膜萃取
液膜由膜溶劑(成膜的基體物質)、表面活性劑(分子中含有親水基和疏水基兩個部分的化合
物)、流動載體和內相試劑組成。液膜分離機理:
(1)單純遷移:單純靠待分離的不同組分在膜中的溶解度和擴散系數的不同導致透過膜的速度
不同來實現分離,
(2)滴內化學反應:在溶質的接受相內添加與溶質能發生化學反應的試劑,使溶質先溶解在膜
溶劑中,然後擴散到膜表面和內相試劑反應。反應生成一種不能逆擴散透過膜的新產物。
(3)膜相化學反應:在膜相中加入一種流動載體,載體分子先在液膜的料液(外相)側選擇
性地與某種溶質發生化學反應,生成中間產物,然後這種中間產物擴散到膜的另一側,與液膜內相試劑作用,並把該溶質釋放出來,這樣溶質就被從外相轉入到內相。
——————————————————————————————————————————
恩~~~~~
Ⅹ 火法分離富集法
火法試金是鉑族元素分解和富集的最有效方法,它在鉑族元素測定中佔有重要地位。
64.2.1.1 鉛試金法
用於富集鉑、鈀、銠、銥4個非揮發性鉑族元素,一次試金能捕集90%以上。鉛試金熔劑對鉻鐵礦很難分解,夾在鉻鐵礦顆粒中的鉑族元素很難捕集。硫化銅鎳礦中的硫和鎳對鉛試金的干擾也不容忽視。因大量硫在熔煉過程中形成的冰銅相會捕集部分鉑族元素,故銅鎳礦試樣必須減少還原劑的加入量,利用氧化鉛使硫氧化。如硫含量很高,則可不加還原劑,甚至還要加入硝酸鉀以氧化部分硫。鎳可能進入鉛扣,影響灰吹。當鉛扣中鎳在0.03g以上時,生成的氧化鎳會粘在灰皿壁上造成灰吹無法進行。對於鎳含量高的試樣,需在熔劑中加入氧化鉛的用量,過量的氧化鉛使鎳排入熔渣中。過量的氧化鉛質量不應少於鎳質量的100倍。銅量在2g以內對鉛試金的影響可以忽略。
為了獲得流動性很好的熔渣,加入活性助熔劑(碳酸鈉、硼砂和過量氧化鉛)的總量應達到稱取試樣質量的2.5倍,並加入玻璃粉使熔渣的硅酸度(熔渣中酸性氧化物所含氧原子物質的量與鹼性氧化物所含氧原子物質的量的比值)在1~1.5之間。
鉛試金法可分為熔煉和灰吹兩個步驟。熔煉是將氧化鉛、還原劑和助熔劑與試樣混勻,置於試金坩堝中,在1000~1200℃高溫爐中熔融,試樣分解並逐步形成硅酸鹽相(熔渣),貴金屬化合物和氧化鉛被還原為金屬而形成金屬相。捕集了鉑族元素的金屬鉛沉到底部。當熔體倒入鐵模中冷卻後可取出已捕集貴金屬的金屬鉛,稱之為鉛扣。灰吹是將鉛扣放入預熱的骨灰皿中或鎂砂灰皿中,在900℃左右進行氧化熔煉,使熔融的金屬鉛氧化為氧化鉛而滲入多孔的灰皿中,最後僅有金屬珠(合粒)留在灰皿內。鉛試金富集即告完成。
當鉛扣中含有毫克量銀時,灰吹得到的是銀(含金)粒,銀對鉑、鈀的灰吹有良好的保護作用,有利於後續的測定。但是銠和銥因不能像鈀和鉑能與銀形成合金,故此時銠、銥在灰吹時損失可達50%。為了避免銠、銥的損失,可在熔煉時加入毫克量的鉑,灰吹時形成鉑粒,鉑在灰吹的後期以鉑鉛互化物形成析出,帶下一部分鉑和銥。灰吹結束時,鉑粒中還阻留相當量的鉛,對銠、銥也有保護作用,故加鉑灰吹,銥的損失僅在5%左右,而銠的損失更小。若加入6mg鉑和4mg鈀灰吹,效果更好。
鉛試金法稱取試樣的量可高達100g,故取樣的代表性好,取樣誤差可以不予考慮,富集的效果好,配料比較復雜。
試劑
硝酸銀溶液(10g/L),稀硝酸介質。
鉑溶液(5mg/mL)稱取2.5g鉑,置於500mL燒杯中,用王水溶解。加1gNaCl,蒸發至近干,取下,置於水浴上蒸干,用(1+1)HCl趕硝酸3次,取下。加入10mgFeCl3、10mgNiCl2、幾滴HCl和300mL水,煮沸使鹽類溶解。加10mL100g/LNaBr溶液,再煮沸使沉澱凝聚。用Na2CO3溶液調節pH至7,煮沸10min,再用Na2CO3溶液調節pH至8~9,保溫30min。過濾以除去含銠、銥的沉澱,用100g/LNaCl溶液洗滌沉澱2次,用HCl中和濾液,移入500mL容量瓶中,用水稀釋至刻度,搖勻。
分析步驟
(1)配料
以40g試樣計,熔劑的大致組成為:Na2CO360g;Na2B4O720g;PbO50g,其中35g被還原為金屬,15g造渣;若含銅、鎳的試樣,則氧化鉛要適當過量,過量氧化鉛應大於銅、鎳質量的200倍;玻璃粉,加入量以調節硅酸度在1~1.5之間;麵粉或硝石,調節還原能力,以產生30gPb為宜。
(2)熔煉
將混合均勻的試樣與熔劑置於試金坩堝中。測定鉑、鈀時加入3滴10g/LAgNO3溶液;測定銠、銥則加入1mL5mg/mL鉑溶液。將坩堝置於800℃試金爐中熔融30min,然後升溫至1100℃,保持20min。將熔融體倒入鐵模中,冷卻,取出鉛扣,砸去熔渣。
(3)灰吹
將骨灰皿放入高溫爐中於900℃灼燒30min,取出,放入鉛扣,再置於高溫爐中,關閉爐門,升溫至熔鉛發亮,微啟爐門,在900℃灰吹至盡。取出灰皿,冷卻,將合粒取出。
64.2.1.2 鋶試金法
用鎳的硫化物作為捕集劑的主要成分,得到的鋶扣能捕集6個鉑族元素,是目前應用較多的一種火法試金。鉑族元素以硫化物的狀態進入鋶扣而與脈石分離。扣中的賤金屬硫化物可被鹽酸分解,而鉑族元素保留在殘渣中。扣中硫化鐵的含量很低的稱硫化鎳扣,呈黃色,堅硬光亮,很容易與熔渣分離,但是必須經過機械破碎才能被鹽酸分解。扣中硫化鐵含量高的稱鎳鐵鋶扣,若扣中硫化鐵的含量小於40%,也易於同熔渣分離;這種扣在空氣中易風化,只要硫化鐵含量大於20%,浸入水中幾小時即可鬆散,無需機械破碎。對於超基性岩和硫化銅鎳礦原礦,含硫化物不多而稱樣量較大,熔煉成鎳鐵鋶扣是合適的;對於硫化礦精礦,因其含量很高,最好熔煉為硫化鎳扣;利用試樣中的硫同氧化鎳反應,而在配方中不另加硫化鐵,若過多的硫化鐵留在熔渣中會引起鉑族元素的損失。
鋶扣破碎後其中的硫化亞鐵、硫化亞鎳可被6mol/LHCl溶解,在溶解過程中會生成絮狀的硫化鎳(β,γ-NiS),它不溶於HCl而溶於熱的FeCl3溶液;但在FeCl3溶液中,鉑族元素硫化物的溶解度增大,尤其是鋨,其損失可達10%,這點尤需引起重視。若在試金熔劑中加入0.2g左右的銻,則鉑族元素的損失小於5%。
鉻鐵礦試樣需先用過氧化鈉和氧化鈣混勻後在850~950℃高溫爐中焙燒2~3h後再進行鋶試金。鋶試金需加入熔劑、還原劑、氧化劑、硫化劑、捕集劑和覆蓋劑等多種試劑。
石英粉和硼砂屬酸性熔劑,前者能與許多金屬氧化物化合生成硅酸鹽,同時能得到流動性好的熔渣。當加入量過多時,會使渣的黏度增加,影響熔渣與試金扣的分離。也可以用玻璃粉代替,但其酸性較弱,1g玻璃粉的作用相當於0.3~0.5g石英粉。硼砂中的B2O3可與金屬氧化物生成硼酸鹽渣,其造渣能力比石英粉強,對試樣的分解能力也比較強,形成的硼酸鹽的熔點也比相應的硅酸鹽低。碳酸鈉既是鹼性熔劑,又是脫硫劑。在試金配料中加入麵粉是作為還原劑,將金屬氧化物還原為金屬或合金,藉以捕集貴金屬,同時將高價氧化物還原為低價,有利於與二氧化硅造渣。硫磺作為硫化劑在高溫時能與鎳等金屬或金屬氧化物形成硫化物。硫化鎳或鎳鋶(Ni3S2)是貴金屬捕集劑,理論上有96%以上的貴金屬被其捕獲。鎳鋶是硫化劑與鎳的化合物在熔煉時形成的。必須特別注意,一般的鎳試劑中往往含有較高的鉑族元素,造成相當高的試劑空白,無法用於痕量鉑族元素分析,需要經過較繁瑣的提純才能使用。羰基鎳粉(用羰基法生產的鎳粉)空白很低,可以直接用於鋶試金法分析痕量鉑族元素。
硼砂〔(Na2B4O7·10H2O)100℃烘烤脫水,研碎後備用〕、硼砂-碳酸鈉(1+1)或食鹽,作為覆蓋劑可起到隔絕金屬的作用,同時防止熔煉時熔融物的濺失。
熔渣的性質(還原性、硅酸度)對貴金屬捕集的影響不容忽視。良好的熔渣應在爐內能迅速低溫造渣,以有利於貴金屬捕集;熔渣的流動性好;對坩堝內壁腐蝕較輕;熔渣的密度相對較小。熔渣的硅酸度(熔渣中所有酸性氧化物中氧原子物質的量)/(熔渣中所有鹼性氧化物中氧的原子物質的量),以1.5~2為宜。
配料是試金中的關鍵步驟。不同的試樣,配料有所不同。對於硅酸鹽試樣,需加入較多的碳酸鈉和適量的硼砂;碳酸鹽試樣需加入較多的石英粉和硼砂;含有較多赤鐵礦和磁鐵礦的氧化礦試樣,應適當增加還原劑用量;硫化物試樣有較強的還原性,需要加大碳酸鈉和二氧化硅的量,同時減少或不加硫化劑。如試樣硫含量高時,則少加硫化劑。
常規試樣的鋶試金熔劑配方見表64.1。
表64.1 鋶試金熔劑配比 (mB:g)
分析步驟
稱取10~40g(精確至0.1g)試樣,與試金配料混勻後倒入試金坩堝中,於900℃試劑爐內熔煉。再升溫至1000℃並保持20~30min,待熔體平靜後出爐,將熔體倒入鐵模中,冷卻後取出鋶扣,剔除熔渣。
將鋶扣置於燒杯中用水浸泡至完全鬆散成粉末,用鹽酸溶解。
64.2.1.3 銻試金法
用銻捕集鉑族元素的火法試金稱之為銻試金。它能捕集全部貴金屬元素,灰吹時包括鋨在內的鉑族元素均無明顯的損失,這是銻試金的優點;其缺點是捕集貴金屬同時,銅、鎳、鈷、鉍和鉛也同時被捕集,又不能灰吹除去。故應用受到了限制,僅適用於組成簡單的鉑族元素單礦物或催化劑中鉑族元素的測定。
銻試金的熔煉條件和鉛試金類似,是用三氧化二銻代替氧化鉛。熔煉溫度為900~1000℃,銻試金要求高溫進爐,快速熔煉。在熔劑中加入一定量的鉀鹼代替部分碳酸鈉,可提高熔渣的流動性。只要熔渣流動性好,其硅酸度在0.8~1.7之間,對銻捕集能力無顯著影響。
銻扣的灰吹在仰放的瓷坩堝蓋上進行。三氧化二銻用揮發除去。鉑族元素以及銅、鎳、鈷等元素以銻化物形式留在合粒中。灰吹溫度在700~950℃對結果沒有影響。鉛、鉍在銻之後被氧化,如果鉛、鉍量多,則它們最終會完全取代銻,鋨則會全部損失;保留鋨的關鍵是有銻。銻扣中有毫克量的銅或金對鉑族元素有保護作用。
合粒中的鉑族元素便於用光譜法測定。
分析步驟
稱取5g以下(精確至0.1g)試樣,與12gNa2CO3、4gK2CO3、4gNa2B4O7、2g玻璃粉、7gSb2O3和2g麵粉成分混勻後倒入50mL坩堝中,加1滴氯化銅溶液(相當於1mgCu),將坩堝置於950℃高溫爐中熔融至熔體平靜,取出,將熔融體倒入鐵模中,冷卻後取出銻扣。
將銻扣放在仰放的瓷坩堝蓋上,於850~900℃高溫爐中灰吹。剩下約1.5mm的亮點取出坩堝蓋,冷卻,剔出合粒。供測定用。