① 數據分析師以後前景怎麼樣
從職位薪水來看,數據分析行業的高薪主要分布在長三角、珠三角和京津地區。北京、上海和深圳的薪水位列第一方陣,均薪在10k+;杭州、寧波和廣州位列第二方陣,均薪在9k+;其他沿海及內陸區域中心城市,如南京、重慶、蘇州、無錫等位於第三方陣,均薪在8k左右。
從職位量來看,北京、上海、深圳和廣州位列第一方陣,職位量在30000+,杭州、成都、南京和天津位列第二方陣,職位量在20000+,武漢、西安、鄭州等區域中心或省會城市對數據分析職位的需求也相對較高,職位量在10000+。
從行業需求來看,互聯網金融、O2O、數據服務、教育、電子商務、文化娛樂領域對數據分析師需求量相比其他行業更大。
不管是在企業還是社會,數據都已經開始扮演越來越重要的「角色」。在這種大勢之下,數據分析思維已經不只是數據分析師的「專業」了,包括銷售、市場、運營、策劃、產品等等前端的職位都需要通過數據分析來幫助自己的工作,甚至連後台的財務、法務、人事等也開始需要通過數據分析來提升效率。可以這么說,如果你在企業之中工作,你未來會開始越來越多的和數據打交道,這個時候數據分析已經成為工作的必要條件。
這里給大家舉幾個例子:
現在的產品,由於銷售渠道開始開始網路化,所以基本上每個產品在做客群劃分、競品分析、銷售預測等等工作時都必須基於數據來進行建模並分析。以前那樣只要寫寫產品分析書,畫畫產品原型,做做產品交互的「好日子」已經過去了。這么說吧,越來越多的公司里,如果產品不能拿數據出來支撐自己的工作,是基本上獲取不到什麼資源的支持。
再拿運營來說,更加離不開數據了。大到做一個活動,目標人群如何劃分,不同人群的方案是什麼,預計投入多少產出多少,這些都需要數據支持;小到一個營銷話術,也需要切分不通人群進行對照實驗來決定。可以說,現在不依靠數據分析的運營已經越來越少。
最後再舉一個後台部門的例子。現在的HR在做人力規劃時,從人員結構分析到配置策略分析再到成本分析,無論哪一項都需要使用到數據。除了本公司的人力數據外,還需要業務數據,競對公司數據乃至於整個行業數據。通過大量數據的分析,可以更加精確的制定公司的人力資源戰略。
② 數據分析師主要做什麼
簡單理解就是:對業務的改進優化;幫助業務發現機會;創造新的商業價值。具體如下:
改進優化業務方面,就是讓業務變得更好。體現在兩大方面:
對企業用戶體驗的改進方面,優化原有業務流程,為用戶提供更好的用戶體驗。
對企業資源的合理化分配利用上,更合理的優化配置企業資源,達到效益最大化的目的。
其次是利用數據查找人們思維上的盲點,進而發現新的業務機會的過程。
最後是在數據價值的基礎上形成新的商業模式,將數據價值直接轉化為金錢模式。
1、分析什麼數據
分析什麼數據與數據分析的目的有關,通常確定問題後,然後根據問題收集相應的數據,在對應的數據框架體系中形成對應的決策輔助策略。
2、什麼時候數據分析
業務運營過程全程數據跟蹤。
3、數據獲取
內部數據主要是網路日誌相關數據、客戶信息數據、業務流程數據等,外部數據是第三方監測數據、企業市調數據、行業規模數據等。
4、數據分析、處理
使用的工具取決於公司的需求。
5、如何做數據分析
數據跟著業務走,數據分析的過程就是將業務問題轉化為數據問題,然後再還原到業務場景中去的過程。
③ 數據分析師主要做什麼
一是幫助企業看清現狀(即通常見的搭建數據指標體系);
二是臨時性分析指標變化原因,這個很常見,但也最頭疼,有時還沒分析出原因,指標可能又變了,注意識別這裡面的偽需求(數據本身有波動,什麼樣的變化才是異常波動?一般以[均值-2*標准差,均值+2*標准差]為參考范圍,個別活動則另當別論);
三是專題分析,這個專題可大可小,根據需求方(也有可能是數據分析師自己)而定,大老闆提出的專題分析相對更難、更有水平一些;
四是深層次解釋關系和預測未來,這個技術難度和業務理解水平要求相對更高一些。如,影響GMV的關鍵因子是什麼?這里當然不是顯而易見的付款用戶數和客單價,而是需要探索的隱性因素;再如,預測下一個季度甚至是一年的GMV,以及如何達成?
④ 數據分析師是做什麼的
數據分析師主要工作是在本行業內將各種數據進行搜集、整理、分析,然後根據這些數據進行分析判斷,在分析數據後對行業發展、行業知識規則等等進行預測和挖掘。數據分析師是數據師其中的一種,另一種是數據挖掘工程師,兩者都是專業型人才。
(4)證券IT數據分析師擴展閱讀
數據分析師和數據挖掘工程師的區別
1、「數據分析」的重點是觀察數據,而「數據挖掘」的重點是從數據中發現「知識規則」。
2、「數據分析」得出的結論是人的智能活動結果,而「數據挖掘」得出的結論是機器從學習集(或訓練集、樣本集)發現的知識規則。
3、「數據分析」得出結論的運用是人的智力活動,而「數據挖掘」發現的知識規則,可以直接應用到預測。
4、「數據分析」不能建立數學模型,需要人工建模,而「數據挖掘」直接完成了數學建模。
5、相對而言,數據挖掘工程師對統計學,機器學習等技能的要求比數據分析師高得多。
6、很多情況下,數據挖掘工程師同時兼任數據分析師的角色。
參考資料來源:網路--數據分析師
參考資料來源:網路--數據師
⑤ 證券行業,統計行業,項目數據分析師,調查分析師,哪個工作好
都差不多吧,你還是學證券吧,將來可以學會投資理財不是,統計的話,進統計局是很難的,不要有想法?
⑥ 數據分析師的就業前景如何
要了解數據分析師的前景可以根據以下的方式來判斷:
一、數據分析師通常分兩類:
一類是在專門的挖掘團隊裡面從事數據挖掘和分析工作的。如果你能在這類專業團隊學習成長,那是幸運的,但進入這類團隊的門檻較高,需要扎實的數據挖掘知識、挖掘工具應用經驗和編程能力。該類分析師更偏向技術線條,未來的職業通道可能走專家的技術路線。
另一類是下沉到各業務團隊或者運營部門的數據分析師,成為業務團隊的一員。他們工作是支撐業務運營,包括日常業務的異常監控、客戶和市場研究、參與產品開發、建立數據模型提升運營效率等。該類型分析師偏向產品和運營,可以轉向做運營和產品。
二、數據分析師的理想行業在互聯網,從行業的角度來看:
1)互聯網行業是數據分析應用最廣的行業,其中的電商企業,更是目前最火的,而且企業也更重視數據分析的價值,是數據分析師理想的成長平台。
2)其次是咨詢公司(比如專門的數據挖掘公司Teradata、尼爾森等市場研究公司),他們需要數據分析人才,而且相對來說,數據分析師在咨詢公司成長的速度更快,專業也會更全面。
3)再次是金融行業,比如銀行和證券等行業,該行業對數據分析的依賴需求,越來越大。
4)最後是電信行業(中國移動、聯通和電信),它們擁有海量的數據,在嚴峻的競爭下,也越來越重視數據分析,但進入這些公司的門檻比較高。
⑦ 數據分析師工資收入多少
從職位薪水來看,數據分析行業的高薪主要分布在長三角、珠三角和京津地區。北京、上海和深圳的薪水位列第一方陣,均薪在10k+;杭州、寧波和廣州位列第二方陣,均薪在9k+;其他沿海及內陸區域中心城市,如南京、重慶、蘇州、無錫等位於第三方陣,均薪在8k左右。
從職位量來看,北京、上海、深圳和廣州位列第一方陣,職位量在30000+,杭州、成都、南京和天津位列第二方陣,職位量在20000+,武漢、西安、鄭州等區域中心或省會城市對數據分析職位的需求也相對較高,職位量在10000+。
從行業需求來看,互聯網金融、O2O、數據服務、教育、電子商務、文化娛樂領域對數據分析師需求量相比其他行業更大。
不管是在企業還是社會,數據都已經開始扮演越來越重要的「角色」。在這種大勢之下,數據分析思維已經不只是數據分析師的「專業」了,包括銷售、市場、運營、策劃、產品等等前端的職位都需要通過數據分析來幫助自己的工作,甚至連後台的財務、法務、人事等也開始需要通過數據分析來提升效率。可以這么說,如果你在企業之中工作,你未來會開始越來越多的和數據打交道,這個時候數據分析已經成為工作的必要條件。
⑧ 證券公司負責數據分析的部門是什麼部門 是叫信息部門嗎
呵呵,你想幹嘛知道內幕信息? 如果從范疇上講是後台部門,後台部門分兩個比較大相對獨立的部門一個是計算機部門 主要負責收發維護交易系統 以及交易信息 還有一個就是財務部 主要是根據計算機部提供的交易所反饋的數據結算 營業部裡面沒有單獨的數據分析部門 如果是總部,那我就不知道了! 希望能夠幫到你