Ⅰ 如何打造高性能大数据分析平台
1.大数据是什么?
大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5 Vs。分别是大规模,多样性,高效性、准确性和价值性。
据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。
这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。
据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一 “。
高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。
根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。
准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。
大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。
与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。
2.大数据系统应包含的功能模块
大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。
下图描述了大数据系统的这些高层次的组件:
2.1各种各样的数据源
当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。
显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。
由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。
2.2数据采集
第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。
在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。
2.3存储数据
第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。
在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。
2.4数据处理和分析
第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。
在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。
2.5数据的可视化和数据展示
最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。
3.数据采集中的性能技巧
数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。
数据采集过程基于对该系统的个性化需求,但一些常用执行的步骤是 – 解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。
涉及数据采集过程的逻辑步骤示如下图所示:
下面是一些性能方面的技巧:
●来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。 异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。
●如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。
●如果数据是从feed file解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。
●优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB /应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。
●类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。
●即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。
●尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。
●大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。
●如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。
●数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。
●来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。
●和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。
●数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。
●一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。
●多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。
●谨慎选择一个能够最大限度的满足需求的解决方案。
4.数据存储中的性能技巧
一旦所有的数据采集步骤完成后,数据将进入持久层。
在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。
●首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。
●大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。
●不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。
●数据库分为行存储和列存储。
●具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。
●同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性。
●这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。
●压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。
●数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。
●并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。
●如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。
●NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。
●许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。
●如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase 使用HDFS)。
●这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。
●大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。
●在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。
5.数据处理分析中的性能技巧
数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。
本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。
●在细节评估和数据格式和模型后选择适当的数据处理框架。
●其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。
●同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。
●有些框架擅长高度并行计算,这样能够大大提高数据效率。
●基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。
●概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。
●一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业
●在数据分块是需要当心。
●该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。
●如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。
●不要忘了查看一个任务的作业总数。在必要时调整这个参数。
●最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。
●此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。
●大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。
●这意味着你可能需要存储原始数据的时间较长,因此需要更多的存储。
●数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。
●为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。
●更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。
●一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。
●实时监控系统的性能,这样能够帮助你预估作业的完成时间。
6.数据可视化和展示中的性能技巧
精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。
需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。
本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。
●确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。
●这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。
●重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。
●物化视图是可以提高性能的另一个重要的技术。
●大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好办法。
●尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。
●可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。
●同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。
●保持像图形,图表等使用最小的尺寸。
●大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。
7.数据安全以及对于性能的影响
像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。
– 首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。
– 数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。
– 您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。
– 通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。
– 针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。
– 同样,评估加密逻辑和算法,然后再选择。
– 明智的做法是敏感信息始终进行限制。
– 在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。
– 注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。
– 尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。
8.总结
本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。
本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。
Ⅱ 股票的问题
股票各参数极其含义与用法
[MACD]
01=中文全名:平滑异同移动平均线
02=英文全名:Moving Average Convergence Divergence
03=指标热键:MACD
04=原始参数值:12、26、9
05=指标应用法则:
06=1.DIF向上交叉MACD,为买进信号;DIF向下交叉MACD,为卖出信号。
07=2.DIF连续两次向下交叉MACD,将造成较大的跌幅。
08=3.DIF连续两次向上交叉MACD,将造成较大的涨幅。
09=4.DIF与股价形成背离时产生的信号,可信度较高。
10=5.MDA、MACD、TRIX三者构成一组指标群,互相验证。
[DMI]
01=中文全名:趋向指标
02=英文全名:Directional Movement Index
03=指标热键:DMI
04=原始参数值:7
05=指标应用法则:
06=1.+DI向上交叉-DI,买进;+DI向下交叉-DI,卖出。
07=2.ADX在高于50的地方向下反折时,应小心股价随时有反转的可能。
08=3.ADX小于DI时,意味股价将进行盘整,此时不宜买卖及使用技术指标。
09=4.ADXR介于20到25之间时,应用CDP及TBP系统进行买卖。
10=5.DMI、VHF、CSI、DX四种指标构成一组指标群,经常被合并使用。
[DMA]
01=中文全名:平均差
02=英文全名:Different Of Moving Average
03=指标热键:DMA
04=原始参数值:10、50
05=指标应用法则:
06=1.DMA向上交叉其平均线时,为买进信号。
07=2.DMA向下交叉其平均线时,为卖出信号。
08=3.DMA的交叉信号比MACD、TRIX略快。
09=4.DMA与股价产生背离时的交叉信号,可信度较高。
10=5.DMA、MACD、TRIX三者构成一组指标群,互相验证。
[EXPMA]
01=中文全名:指数平均线
02=英文全名:Exponential Moving Average
03=指标热键:EXP
04=原始参数值:12、50
05=指标应用法则:
06=1.EXPMA一般以观察0.15和0.04二条均线为主。
07=2.0.15指数平均线向上交叉0.04指数平均线时,为买进信号。
08=3.0.15指数平均线向下交叉0.04指数平均线时,为卖出信号。
09=4.EXPMA是多种平均线计算方法的一种。
10=5.EXPMA配合MOM指标使用,效果更佳。
[TRIX]
01=中文全名:三重指数平滑平均线
02=英文全名:Triple Exponentially Smooth Moving Average
03=指标热键:TRIX
04=原始参数值:12、9
05=指标应用法则:
06=1.TRIX由下往上交叉平均线时,为长期买进信号。
07=2.TRIX由上往下交叉平均线时,为长期卖出信号。
08=3.DMA、MACD、TRIX三者构成一组指标群,互相验证。
[BRAR]
01=中文全名:情绪指标
02=指标热键:BRAR
03=原始参数值:26
04=指标应用法则:
05=1.BR>400,暗示行情过热,为反向卖出信号;BR<40,行情将起死回生,为买进信号。
06=2.AR>180,能量耗尽,为卖出信号;AR<40,能量已累积爆发力,为买进信号。
07=3.BR由300以上的高点下跌至50以下的水平,低于AR 时,为绝佳买点。
08=4.BR、AR、CR、VR 四者合为一组指标群,须综合搭配使用。
[CR]
01=中文全名:带状能量线
02=指标热键:CR
03=原始参数值:26
04=指标应用法则:
05=1.CR>400时,其10日平均线向下滑落,视为卖出信号;CR<40,为买进信号。
06=2.CR由高点下滑至其四条平均线下方时,股价容易形成短期底部。
07=3.CR由下往上连续突破其四条平均线时,为强势买进点。
08=4.CR除了预测价格之外,最大的作用在于预测时间。
09=5.BR、AR、CR、VR四者合为一组指标群,须综合搭配使用。
参考资料:http://www.rssair.com/blog/default.aspx?id=8&t=
Ⅲ EXP指数平均线是干啥的
EXPMA 指数平均线 简称:EXPMA 中文全名:指数平均线 英文全名:Exponential Moving Average 指标热键:EXP 原始参数值:12、50 指标应用法则: 1.EXPMA一般以观察0.15和0.04二条均线为主。 2.0.15指数平均线向上交叉0.04指数平均线时,买进。 3.0.15指数平均线向下交叉0.04指数平均线时,卖出。 4.EXPMA是多种平均线计算方法的一种。 5.EXPMA配合MOM指标使用,效果更佳。 要看 是运用在哪里呢譬如游戏中就是双倍经验,用在商品底部的时候就是使用期限呢,,,
Ⅳ MOM动量线是反映什么的指标,怎么看,如何设置其参数最好
1.12天MOM:(当日收盘价-12天前收盘价)
2.25天MOM:(当日收盘价-25天前收盘价)
3.图表上除了显示动量线之外,经常另外配置一条动量线的10天平均线。
来龙去脉
MOmentum动量线,简称MOM。“动量”这一名词,市场上的解释相当广泛。 以 Momentum命名的指标,种类更是繁多。综合而言,动量可以视为一段期间内,股价涨跌变动的比率。 本书所介绍的动量线, 是由 Perry Kaufman 在《 Trading Systems and Methods》一书所发表的简易动量模式。 一般股民,经常将Momentum视为超买超卖指标,而忽略其在“速度”方面的表现。事实上,将Momentum解释成“速度线”,更符合其实际的作用。理论上,一波健全的股价趋势,其上涨或下跌的过程,应该维持着一定的行进速度。如果行进的速度逐渐减缓,股价很容易转变成整理的格局,甚至于反转。因此,观察股价的速度感,对于股价多空力道的判定,有很大的帮助。
指标剑法
12天M0M以O轴为中心线,O轴的上、下方,分成六等份的超买超卖区, 分别为+1、+2、+3和-1、-2、-3。例如:甲股的12天MOM上升至6·8时, 我们将它定义为+1。那么,13·6就是+2,20·4就是+3。相反的,-6·8定义为-1·-13·6为 -2,-20·4为-3。
注意!每一支股票的超买超卖区都不一样,读者必须自行寻找适合的界限值。
1.短线行情,12日MOM上升至+1时,股价回档。
2.短线行情,12日MOM下跌至-1时,股价反弹。
3.中期趋势, 2日MOM>+2时,经常是上升波段结束的时机。
4.中期趋势,12日MOM<-2时,经常是下跌波段结束的时机。
5.12日MOM>+3变成极端行情时,视为强势多头格局,持股不必过早卖出。可以等待MOM指标曲线,变成一波顶比一波顶低,而与股价走势背离时,再卖出不迟。
6.12日MOM<-3变成极端行情时,视为极弱势空头格局, 不可随意进场买入股票。至少等待MOM指标曲线,形成一波底比一波底高,而与股价走势背离时, 再择机进场买入。
25天MOM(速度线)以O轴为中心线:
1.25天MOM>O轴,代表中期多头走势。
2.25天MOM<O轴,代表中期空头走势。
3.25天MOM向上交叉其6天平均线,并且其6天平均线也同步向上扭转时, 股价容易上涨。
4.25天MOM向下交叉其6天平均线,并且其6天平均线也同步向下扭转时, 股价容易下跌。
注意!单纯观察25天MOM的6天平均线时,这条曲线一般都与股价同步,因此, 当 25天MOM的6天平均线开始走缓,并且有转弯迹象时,应小心股价是否即将反转。
(附注一)25天MOM也可以规画出+3 ̄-3六个超买超卖界限,但是,一般以 12 天MOM较为常用。
(附注二)25天MOM与12天MOM合并使用效果更佳.当12天MOM显示超买或超卖状况时,同时观察25天MOM,可以检查其是否构成反转的条件。如果条件尚未成熟,则 12天MOM所显示的超买或超卖现象,可能只会促使股价回档或者反弹而已。
(附注三)如果12天MOM曾经上升至+2或+3的界限,同时25天MOM也显示股价有向下反转的疑虑时。请参考EXPMA指数平均数,观察其0·15指数平均数,是否发生向下交叉0·04指数平均数的现象。如果EXPMA的两条平均数,已经出现向下交叉的讯号,则可以确定股价正式向下反转。(EXPMA指标请参考《笑傲股林》)
(附注四)如果12天MOM曾经下跌至-2或-3的界限,同时25天MOM也显示股价有向上回升的迹象时。请参考EXPMA指数平均数,观察其0·15指数平均数,是否发生向上交叉0.04指数平均数的现象。如果EXPMA的两条平均数,已经出现向上交叉的讯号,则可以确定股价正式向上反转。
深入讲解
常态与极端的区别
传统的超买超卖指标,一般波动于0~100之间,并且拥有固定的超买超卖值。当股价温和波动时,这一类型指标,在短线买卖的时机上,尚可以提供相当的参考价值。但是,当股价波动幅度加剧,出现大行情时,传统指标因受限于固定的波动范围,常会出现指标钝化的现象,这种现象股民常常称之为“指标失灵”。
为了突破超买超卖指标的限制,行情必须分级。MOM 动量线将行情分成三级,第一和第二级称为“常态行情”,第三级称为“极端行情”。第一级行情就是所谓的短期趋势,第二级行情为中期趋势。行情处于第一或第二级波动时,股价
的回档或反弹,大都能和MOM指标的超买超卖线相呼应。类似这种模式的行情, 其 MOM很少超过+3和-3的范围。
MOM的最大波动,如果是仅局限于+2~-2之间的行情,我们称之为“常态行情” 。例如:“矩形”和标准的“三波段”行情。这类型股票,一般都是股性较温和的个股,循环规律有节奏感,涨跌脉动有迹可寻,走势较容易掌握。
“矩形”的行情,其动量线大多波动于+1~-1之间。但是, 其股价的行进并不一定呈横向整理。单方向的上涨或下跌,只要股价以“涨、跌、涨、跌”的温和速度前进,都可视为“矩形”行情。就好像“轨道线”、“路径指标”一样,很规矩的被限制在一定的空间,它的买进卖出讯号,非常明确而且肯定。
标准三波段上涨或者三波段下跌的行情,其动量线波动范围,经常会扩充至+2~-2之间。MOM抵达+1或-1时,第一波行情结束。第二波行情属于回档或者反弹波。最后,由第三波行情将MOM推移至+2或-2。(这里指的是波浪理论中的前三波,其第五波行情一般都属极端行情较多)。
一般理想状况之下,MOM动量线会依上述两种模式, 规矩的波动在第一与第二级超买超卖界限内。而且,股民很容易掌握股价的脉动,我们称之为“常态行情” 。然而,当行情变成超强势或极弱势时,MOM指标会急冲至+3之上或-3之下,我们称之为“极端行情”。一旦股价出现极端行情时,超买超卖型指标会失去作用,读者应选择采用趋势指标,或者等待指标形成“背离”的状态时,再进行买卖的动作。
价差引力
深入了解MOM动量线之前,必须先了解其公式的计算方法。以12日MOM为例子,他是将当天的股价,和12天前的股价做比较的结果。我们可以想像两个股价间,存在着一种引力。当目前的价格和12天前的价格,两者之间的差距扩大到一定极限时,当天的股价会受到牵制,暂时停止前进。也就是说,当天的价格和12天前的价格,存在着最大极限距离的限制。在一般“常态行情”下,大多数个股几乎都能符合这种运动规律。
“价差引力”也可视为“价格乖离”,乖离率太大时,股价必须调整修正。随着行情大小的不同,两个价格之间的差距,存在着最大容许极限。一旦短线行情,突破第一级差距极限时,则股价会朝第二级差距极限前进,并且转变成中级行情。如果中级行情突破第三级差距极限,则“常态行情”变成“非常态行情”,股价像断了线的风筝,变成无法掌控的脱轨状况。
多空天秤
在第六章中,我们曾经介绍过“价格平衡”的意义。而25天的MOM动量线, 正是价格平衡原理的典型代表。
市场上所有的价格行为,只有强和弱之分。基于“汰弱择强”的操作原则,股民一定会选择介入强势股。然而强和弱、多和空是相对的名词,股民在决定一次交易之前,必须先明确区分多空的界线,才能对目前的价位下一个定义。
股价走势表现在K线图表上时,是由左向右倾斜的。 如果价格曲线向有上方倾斜前进,则代表股价上涨;如果价格曲线向右下方倾斜前进,则代表股价下跌。换句话说,现在的价格必须高于先前的价格,才能视为强势多头。但是,现在的价格,并不一定是近期内的最高价。它可能比前天的价位高,比昨天的价位低。如此一来,怎么样才能对“价格倾斜”下定义呢?
现在,我们以25天为周期,取第13天为中间支点,左右各占12天。把今天的价格与25天前的价格连成一直线,将这条直线视为一根横杆。右边的当日价格和左边的25天前价格,当成左右两边的秤盘。然后,组合中间支点、横杆、秤盘。
当右方的秤盘高于左方的秤盘时,表示右方卖压轻,股价强势。此时,MOM 指标会高于O轴,代表多头走势。当右方的秤盘低于左方的秤盘时,表示右方卖压重,股价弱势。此时,MOM指标会低于O轴,代表空头走势。也许,你想修改25天的周期参数。但是,根据笔者的研究,25天的周期参数,在认定多空界限方面,显然较具代表性。
Ⅳ 唐筛结果前两个指标比mom高正常吗
主要还是后面几个指标,低风险
Ⅵ EXMPA是什么指标啊这四条线是什么线啊
EXMPA是指数平均数指标,一般它由白色和黄色两根均线(也可四条均线)以及K线组成,白色均线是短期均线,黄色均线是长期均线。EXPMA指标对于股价波动的反应比较灵敏,它的一般用法是:短线均线上穿长期均线买入,短线均线下穿长期均线卖出。
Ⅶ 什么是股票中的EXPMA指标
EXPMA技术指标在使用其乖离时要注意几点: (1) 预测大盘指数的正确率要远远高于个股。 (2) 必须在日K线,周K线的EXPMA中三者(指数、白线、黄线)同时乖离时,正确率最高。 (3) 在K线图上三者(指数、白线、黄线)关系是:指数(股价)与白线的乖离,应大于白线与黄线的乖离。 (4) 成交量异常放大,指数(股价)连续冲高,加速到几乎呈90度角上行时。(就象跳高先助跑,再加速,然后一跃而上。shiping讲解@!
Ⅷ 我需要MOM指标公式 在同花顺中使用
MoM:close-ref(close,n);
ma1:ma(mom,p);
{n一般为20,P一般为5}
========
有可能是参数不同,你把参数调整再看看。
Ⅸ 股票市场上的一些技术参数都是什么意思!!
股票各参数极其含义与用法
[MACD]
01=中文全名:平滑异同移动平均线
02=英文全名:Moving Average Convergence Divergence
03=指标热键:MACD
04=原始参数值:12、26、9
05=指标应用法则:
06=1.DIF向上交叉MACD,为买进信号;DIF向下交叉MACD,为卖出信号。
07=2.DIF连续两次向下交叉MACD,将造成较大的跌幅。
08=3.DIF连续两次向上交叉MACD,将造成较大的涨幅。
09=4.DIF与股价形成背离时产生的信号,可信度较高。
10=5.MDA、MACD、TRIX三者构成一组指标群,互相验证。
[DMI]
01=中文全名:趋向指标
02=英文全名:Directional Movement Index
03=指标热键:DMI
04=原始参数值:7
05=指标应用法则:
06=1.+DI向上交叉-DI,买进;+DI向下交叉-DI,卖出。
07=2.ADX在高于50的地方向下反折时,应小心股价随时有反转的可能。
08=3.ADX小于DI时,意味股价将进行盘整,此时不宜买卖及使用技术指标。
09=4.ADXR介于20到25之间时,应用CDP及TBP系统进行买卖。
10=5.DMI、VHF、CSI、DX四种指标构成一组指标群,经常被合并使用。
[DMA]
01=中文全名:平均差
02=英文全名:Different Of Moving Average
03=指标热键:DMA
04=原始参数值:10、50
05=指标应用法则:
06=1.DMA向上交叉其平均线时,为买进信号。
07=2.DMA向下交叉其平均线时,为卖出信号。
08=3.DMA的交叉信号比MACD、TRIX略快。
09=4.DMA与股价产生背离时的交叉信号,可信度较高。
10=5.DMA、MACD、TRIX三者构成一组指标群,互相验证。
[EXPMA]
01=中文全名:指数平均线
02=英文全名:Exponential Moving Average
03=指标热键:EXP
04=原始参数值:12、50
05=指标应用法则:
06=1.EXPMA一般以观察0.15和0.04二条均线为主。
07=2.0.15指数平均线向上交叉0.04指数平均线时,为买进信号。
08=3.0.15指数平均线向下交叉0.04指数平均线时,为卖出信号。
09=4.EXPMA是多种平均线计算方法的一种。
10=5.EXPMA配合MOM指标使用,效果更佳。
[TRIX]
01=中文全名:三重指数平滑平均线
02=英文全名:Triple Exponentially Smooth Moving Average
03=指标热键:TRIX
04=原始参数值:12、9
05=指标应用法则:
06=1.TRIX由下往上交叉平均线时,为长期买进信号。
07=2.TRIX由上往下交叉平均线时,为长期卖出信号。
08=3.DMA、MACD、TRIX三者构成一组指标群,互相验证。
[BRAR]
01=中文全名:情绪指标
02=指标热键:BRAR
03=原始参数值:26
04=指标应用法则:
05=1.BR>400,暗示行情过热,为反向卖出信号;BR<40,行情将起死回生,为买进信号。
06=2.AR>180,能量耗尽,为卖出信号;AR<40,能量已累积爆发力,为买进信号。
07=3.BR由300以上的高点下跌至50以下的水平,低于AR 时,为绝佳买点。
08=4.BR、AR、CR、VR 四者合为一组指标群,须综合搭配使用。
[CR]
01=中文全名:带状能量线
02=指标热键:CR
03=原始参数值:26
04=指标应用法则:
05=1.CR>400时,其10日平均线向下滑落,视为卖出信号;CR<40,为买进信号。
06=2.CR由高点下滑至其四条平均线下方时,股价容易形成短期底部。
07=3.CR由下往上连续突破其四条平均线时,为强势买进点。
08=4.CR除了预测价格之外,最大的作用在于预测时间。
09=5.BR、AR、CR、VR四者合为一组指标群,须综合搭配使用。