㈠ 杠杆原理的本质是什么
由于特定费用(如固定生产经营成本或固定的财务费用)的存在而导致的,当某一财务变量以较小幅度变动时,另一相关变量会以较大幅度变动。具体财务管理中的杠杠杆原理
亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F• L1=W•L2。式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。"
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水。在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的,而且墨子的发现比阿基米德早了约二百年。
生活中的事例有:筷子,跷跷板,起钉锤,开罐器等。杆有三种形式:即经营杠杆、财务杠杆和复合杠杆。
㈡ 杠杆原理是什么
初中物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆。
㈢ 什么是杠杆原理
古希腊科学家阿基米德有这样一句流传千古的名言:“假如给我一个支点,我就能把地球挪动!”这句话有着严格的科学根据.
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
如果您还有什么不满意的,请发消息给我,并附上问题的连接,谢谢
㈣ 什么是杠杆原理
杠杆原理
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
严格的科学根据。(阿基米德是古希腊著名的科学家,许多问题在阿基米德的思考下都解决了)
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅杆顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
㈤ 杠杆的原理是什么
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
㈥ 杠杆原理的原因
杠杆原理得出的根据其实是转动力矩平衡。
对于物体的旋转,影响因素有三个:一个是力臂(力的作用线到转轴的距离)一个是力的大小,还有物体的转动惯量。这是由控制变量实验得出的。
这就和物体的平动中一样,和牛顿第二定律表明加速度和质量还有力的大小有关一样。
㈦ 求杠杆原理的理论解释(为什么会有这个关系)
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为f1•
l1=f2•l2。式中,f1表示动力,l1表示动力臂,f2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一
㈧ 杠杆原理怎么用物理学理论解释
物理学中把在力的作用下可以围绕固定点转动的坚硬物体叫做杠杆。
五要素:动力,阻力,动力臂,阻力臂和支点
1、支点:杠杆的固定点,通常用O表示。
2、动力:驱使杠杆转动的力,用F1表示。
3、阻力:阻碍杠杆转动的力,用F2表示。
4、动力臂:支点到动力作用线的垂直距离叫动力臂,用L1表示。
5、阻力臂:支点到阻力作用线的垂直距离叫阻力臂,用L2表示。
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1·
l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
㈨ 简述杠杆原理
亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F
㈩ 什么是杠杆原理
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条专件”。要使杠杆平属衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。
即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·
L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
(10)杠杆原理的理论扩展阅读:
杠杆定理:
1、在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡。
2、在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾。
3、在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾。
4、一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替。
5、相似图形的重心以相似的方式分布。
参考资料来源:搜狗网络——杠杆原理