A. spss 如何做异常点的检验
异常点。即:异常值
Spss中异常值检查方法如下:
检查异常值方法1:
最常用的方法就是对变量进行排序,这也是最简单的方法。排序后对照最大值和最小值、全距等统计量可以看出数据的离群状况。
检查异常值方法2:
散点图的优势就在于直观的呈现两两变量间的关系,尤其在两变量间的线性关联比较强的时候,如果有离群值,图形侦察的结果会很明显,不过(也包括矩阵散点等图形)其局限在于,其本质还是变量间的两两间的关系,更多的多维信息的提供还是需要经验去判断。
检查异常值方法3:
箱体图为我们提供了数据百分位数的概念,例如四分位数(25%和75%)是将该变量分成约4个部分,分别提供了数据不同分位点附件的离散性,而且同时提供描述数据集中性的中位数,这样在中间50%的数据上提供的信息将是异常丰富的。
检查异常值方法4:
在主要统计建模过程中大多会提供异常值或极端值的诊断,例如距离的测算:cook距离、杠杆值等;影响统计量:DfBeta、协方差比率等。它们均有相应的经验上的判断标准,如果有些指标没有相应的判断异常值的标准,则可以通过排序的方式,找到其相对大小。
检查异常值方法5:
标识异常个案,这里提供的是统计建模的方式侦查异常个案(注意它的结果有可能和我们其他方式侦查的结果有出处),这种方法主要通过两步聚类的思想,找到不同个案间的相似性,通过对所在类别的评价计算出异常索引,然后找到对应的ID号,则该个案可能为异常值,至于对这些异常个案怎么处理,分析人员作出何种决定,这个最好结合专业背景综合判断后续的处理方法。
检查异常值方法6:
如果涉及的是时序数据,控制图是不错的选择,在控制规则里提供了异常丰富的侦查异常个案的选项。
当然其他过程里也有一些细节的处理,例如,排列图、误差条形图、可视离散化、缺失值诊断、数据验证过程等。
B. 请教关于离群值的处理问题
我们在分析数据的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。
离群值产生的原因大致有两点:
1.总体固有变异的极端表现,这是真实而正常的数据,只是在这次实验中表现的有些极端,这类离群值与其余观测值属于同一总体。
2.由于试验条件和实验方法的偶然性,或观测、记录、计算时的失误所产生的结果,是一种非正常的、错误的数据,这些数据与其余观测值不属于同一总体。
由于数据的分布不同,判断离群值的方法也有所差别,在此只介绍国标GB/T4883-2008对于正态分布情况下的离群值判断方法,其他分布情况下,我还没有找到相关资料。
对于离群值,国标也有一些概念定义:
1.检出水平
为检验出离群值而指定的统计检验的显著性水平,和大多数检验一样,α一般为0.05
2.剔除水平
为检验出离群值是否为高度离群值而指定的统计检验的显著性水平,剔除水平α*不应超过检出水平α,通常为0.01,个人认为这个剔除水平就是判断该离群值是否需要实际剔除,也就是说该离群值有可能是第二类原因产生的非正常样本数据。
3.统计离群值
在剔除水平下统计检验为显著的离群值
4.歧离值
在检出水平下显著,而在剔除水平下不显著的离群值。
================================================
正态分布情况下的离群值判断方法,大致可分为两类:可以检验剔除水平和不可检验剔除水平
一、可检验剔除水平
1.总体标准差已知时,奈尔检验法
对样本数据按从小到大顺序排序,
如怀疑最大值X(n)为最大值,则计算统计量Rn
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Rn'
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α*(n)时,判定X(1)为统计离群值,否则不能判定
2.总体标准差未知时,格拉布斯检验法
对样本数据按从小到大顺序排序,然后计算样本均值和样本标准差s
如怀疑最大值X(n)为最大值,计算统计量Gn
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Gn'
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α*(n)时,判定X(1)为统计离群值,否则不能判定
3.总体标准差未知时,狄克逊(Dixon)检验法
对样本数据按从小到大顺序排序
样本量n在3-30时
计算统计量
样本量n在30-100时
计算统计量
确定检出水平α,查狄克逊系数表(见国标GB/T4883-2008),得出临界值
当Dn>D1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当Dn'>D1-α*(n)时,判定低端值X(1)为离群值,否则不能判定
4.总体标准差未知时,偏度-峰度检验法
我们知道峰度和偏度是判断数据是否为正态分布的指标,而离群值则明显偏离样本主体,因此我们也可以使用偏度-峰度检验法来判断离群值
<1>单侧情形——偏度检验法
当离群值处于高端或低端一侧时,可使用偏度检验法判断,首先构造偏度统计量bs
确定检出水平α,查偏度检验系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当bs'>b1-α(n)时,判定低端值X(1)为离群值,否则不能判定
确定剔除水平α*,查偏度系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α*(n)时,判定高端值X(n)为统计离群值,否则不能判定
当bs'>b1-α*(n)时,判定低端值X(1)为统计离群值,否则不能判定
<2>双侧情形——峰度检验法
当高端、低端两侧都可能出现离群值时,可使用峰度检验法判断,首先构造峰度统计量bk
确定检出水平α,查峰度检验系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α(n)时,判定离均值最远的观测值为离群值,否则判定未发现离群值
确定剔除水平α*,查峰度系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α*(n)时,判定离均值最远的观测值为统计离群值,否则未发现统计离群值。
二、不可检验剔除水平
1.观察法
根据直方图或四分位图进行判断,现在很多统计软件在绘制这两种图时,都会将离群值特殊标记,一般认为在均值±3倍标准差以外都属于离群值,高出四分位距两倍以上也属于离群值。
2.莱伊达法
又称为3σ准则,在已知总体标准差的情况下使用σ进行判断,但是实际上总体标准差往往未知,因此常使用样本标准差s替代σ,以样本均值替代真值,具体为
Xd是疑似离群值,X为均值
如果疑似离群值与均值的差值大于三倍标准差,则可认为该值为离群值。
3.肖维特法
统计量
如果计算出的ω值大于肖维特系数表中相应测定次数n时的值,则可认为该值为异常值
3.罗曼诺夫斯基检验法
又称t检验,首先将疑似离群值剔除,然后计算剔除后的均值和标准差
根据测量次数n和显著性水平α,进行t检验,得出系数k,如果
则认为xj为离群值
4.4d检验法
5.中位数与算数平均值比较判断法
我们知道中位数居于一组数据中间的数,而均值则可认为是一组数字的“重心”或“平衡点”,当二者相等的时候,可认为这组数字是绝对平衡、没有离群值的,我们可以据此进行判断,当二者相差较大时,表面该组数据可能存在离群值,将疑似离群值剔除之后,再计算均值和中位数,如果二者相差变小,则可认为被剔除值是离群值。
======================================
判断离群值方法的选择与应注意的问题
1.合理选择离群值的判断方法
离群值的判断方法很多,实际中到底选用哪一个,需根据对测量要求的精准度和测量次数多少来综合确定,一般情况下,测量次数多于30,或大于10次且只做粗略判断时,使用莱伊达法即可;判断精度要求不高,但要求快捷方便时,可以选用4d和中位数与算数平均数比较法。实际上,对于不用查表的方法大都比较便捷,但是代价是精度不够,且无法检验剔除水平,相反一些需要借助查表的方法精度较高但是计算复杂,各有利弊。
2.准确找出离群值
一般情况下,测量列中残差较大者就是疑似离群值,它也就是样本数据中的最大值或最小值
3.查找产生离群值的原因
已经判断为离群值的,即使是统计离群值,也不要简单剔除了之,应进一步分析产生离群值的原因。
C. 从数据集中剔除异常数据一般用什么数据算法
常用的方法有:
1、可以通过“分析”下“描述统计“下“频率”的”绘制“直方图”,看图发现频数出现最少的值,就可能是异常值,但还要看距离其它情况的程度。
2、可通过“分析”下的“描述统计”下的“探索”下的“绘制”选项的“叶茎图”,看个案偏离箱体边缘(上端、下端)的距离是箱体的几倍,“○”代表在1.5-3倍之间(离群点),“*”代表超过3倍(极端离群点)。
3、可以通过“分析”下“描述统计“下“描述”下的选项“将标准化存为变量Z”,选择相应的变量,“确定”。将生成新变量,如果值超过2,肯定是异常值。
-
D. 怎么对统计数据的异常值进行判断和处理
异常值也称离群值,具体地说,判断标准依据实际情况,根据业务知识及实际需要而定。
上界=75%分位数+(75%分位数-25%分位数)*1.5
下界=25%分位数- (75%分位数-25%分位数)*1.5
比上界大的和比下界小的都是异常值。
(4)离群点异常值高杠杆值扩展阅读:
取检出水平α为5%,剔除水平α’为1%,按双侧情形检验,从附表中查得检出水平α对应格拉布斯检验临界值G0.975,剔除水平α’对应格拉布斯检验临界值G0.995。
若Gn>Gn’,且Gn>G0.975,则判断fn为异常值,否则,判断无异常值;
若Gn>Gn’,且Gn>G0.995,则判断fn为高度异常值,可考虑剔除;
若Gn’>Gn,且Gn’>G0.975,则判断f1为异常值,否则,判断无异常值;
若Gn’>Gn,且Gn’>G0.995,则判断f1为高度异常值,可考虑剔除;
E. 统计学里异常值的概念
异常值也称离群值,具体地说,判断标准依据实际情况,根据业务知识及实际需要而定。
要是一般地说,可以用公式计算:
upper adjacent value = 75th percentile + (75th percentile – 25th percentile) * 1.5
lower adjacent value = 25th percentile – (75th percentile – 25th percentile) * 1.5
翻译过来:
上界=75%分位数+(75%分位数-25%分位数)*1.5
下界=25%分位数- (75%分位数-25%分位数)*1.5
比上界大的,和比下界小的都是异常值。
所谓75%分位数,就是把数据从小到大排除,当中的即中位数,也是50%分位数,在75%位置的值即75%分位数,其它同理。
F. 如何判断和处理离群点
简单判断,你可以用公式取得每个值与均值的绝对差值,至于绝对差值多大的时候判断为离群值,你自己掌握就可以了。
绝对差值=ABS(值-average(所有值))
G. 点状图中的离群值是什么
离群值(outlier),也称逸出值,是指在数据中有一个或几个数值与其他数值相比差异较大。
如果有某一个点或者某几个点偏离大多数点,也就是离群值,通过散点图可以一目了然。
比如你所提供的点状图中最右边的点
H. 一道大学统计学关于离群点的题目,16题知道答案但不知道为什么。求大佬详解,多谢!
假设车速是正态分布,选项D速度超过正负三倍标准差范围了
I. 统计量受异常值什么影响最大
异常值包括缺失值,离群值等,是指数据中有异常表现的数据点。
离群值是指y远离模型预测值的点,也就是偏离数据范围很远的点。
杠杆点是观测点x是异常的,但是y的值却在合理的预测范围内,杠杆点对模型的拟合影响很大值得关注。
异常值中缺失值一般根据缺失值的产生状况有不同处理,有随机缺失,完全随机缺失和完全非随机缺失三类,一般处理方法包括去缺失值,插补法等。
缺失值的检测在r中有VIM包可以查看数据中的确实值的情况。
J. 什么是高杠杆点
支点:杠杆绕着转动的固定点,一般情况下该点是不移动的。简单一点讲,就是在杠杆转动时,唯一的一个不动点。你只要找到这一点,就将其判断为支点。动力:使杠杆转动的力。这个力的作用点在杠杆上,你需要知道的是这个力的大小及方向。题目一般都会把这两个条件告诉你,然后你将这个力的方向延长,这条画出来的虚线我们称之为动力作用线。阻力:阻碍杠杆转动的力。阻力的方向的判断比较难,但是必须知道。举例子好理解:用木头撬动石头时,杠杆是要克服石头重力转动的,所以此时石头重力是阻力,方向是竖直向下。初中题目如果没有直接或间接告诉你阻力的方向和大小,一般就是要克服重力转动的,类似于上面的题目。阻力作用线和动力作用线一样,需要画出来。动力臂:从支点到动力作用线的距离。只要画出过支点的垂直于动力作用线的线段,这个线段长度就是动力臂的长度,所谓距离,就是支点离线段的最近距离嘛!阻力臂:从支点到阻力作用线的距离。杠杆是个物理模型.通常支点就是相对”固定”的位置.用筷子夹食物,那么支点在筷子与手的上部(不是手指)接触的部位.有些情况下支点是移动的,例如动滑轮看成动力臂为阻力臂二倍的杠杆时.还有时杠杆的支点是可以任意选定的.例如一座”独木桥”的问题,可将支点选在任意一端(甚至桥上任意一点)