导航:首页 > 汇率佣金 > 气液相量用杠杆规则确定

气液相量用杠杆规则确定

发布时间:2021-06-16 05:55:36

⑴ 高中化学有机的问题

考试科目名称:材料科学与工程基础 考试科目代码:840

“材料科学与工程基础” 为材料科学与工程一级学科考试科目,答题时间为180分钟,共150分,内容分为两部分。第一部分为公共知识部分,内容为“大学物理学”,占50分;第二部分为选答题部分,占100分,选答题部分分为六组,考生根据选报的二级学科或研究方向选择六组试题中的之一。

公共知识部分考试大纲

“大学物理学(必答)”部分考试大纲
一、考试要求
“大学物理学”部分满分为50分,是报考哈尔滨工业大学材料科学与工程学院各二级学科考生必答部分。大学物理学考题主要包括力学、热学和电磁学三大部分,主要参考教材为张三惠主编《大学物理学》(第一~三册,清华大学出版社出版)。
大学物理学试题部分的基本要求是:(1)物理概念清晰,理解并掌握力学、热学和电磁学的基本物理原理和方法;(2)能够利用物理学的基本原理和方法解决相关的物理问题。
二、考试内容
1)力学部分
a:动量与角动量:质点系的动量定理,动量守恒定律,质心运动定理,质点及质点系角动量定理及守恒定理。
b:功和能:保守力与势能、机械能守恒定律,碰撞。
2)热学部分
a:气体动理论:温度的微观意义,能量均分定理,麦克斯韦速率分布定律,气体分子平均自由程。
b:热力学第一定律:功、热量和热力学第一定律,热容,绝热过程,卡诺循环。
c:热力学第二定律:热力学概率与自然过程的方向,热力学第二定律及其微观意义,玻耳兹曼公式及熵增加原理。
3)电磁学部分
a:静止电荷的电场:库仑定律与叠加原理,电通量及高斯定理,静电场分布。
b:静电场中的电介质:电介质的极化,电容器及其电容。
c:磁力:磁与电荷运动,磁场与磁感应强度,带电粒子在磁场中的运动。
d:磁场中的磁介质:原子磁矩,磁介质的磁化。
三、试卷结构
a)满分:50分
b)题型结构
a:概念及简答题(40%)
b:论述题(60%)
c)内容结构
a:力学(30%)
b:热学(30%)
c:电磁学(40%)
四、参考书目
《大学物理学》(第一~三册),张三惠主编,清华大学出版社

选答题部分考试大纲

第一组:“材料结构与力学性能(选答)”部分考试大纲
(材料学学科,金属材料与陶瓷材料方向选答部分;材料物理与化学学科,材料物理与化学方向)

一、考试要求
试卷内容分为两部分:第一部分为材料结构与缺陷;第二部分为材料力学性能。
材料结构与缺陷部分的基本要求是应考者需全面掌握晶体材料结构及其缺陷的基本概念、基本规律、基本原理,要求能灵活运用材料结构与缺陷的基本理论综合分析材料结构与性能的相关性。
材料力学性能的基本要求是:(1)理解并掌握材料弹性变形、塑性变形与断裂等基本力学行为的宏观规律及微观本质,并进一步了解应力状态、试样几何因素以及环境因素对材料力学行为的影响;(2)熟悉材料常用力学性能指标的意义、测试原理、影响因素及其应用范围,具有按照实际工作条件和相关标准、规范等正确选择试验方法和指标进行材料测试、评价及选择材料的能力,并了解改善材料力学性能的基本方法和途径。
二、考试内容
1)材料结构与缺陷部分
a:晶体学基础:原子的结合键、结合能;结合键的特点、与性能的关系;晶体学的基本概念;晶面指数、晶向指数的标定;晶面间距的计算;晶体的对称性。
b:晶体结构:典型纯金属的晶体结构;合金相的晶体结构;离子晶体结构;共价晶体结构;亚稳态结构。
c:晶体缺陷:晶体缺陷的分类、结构、表征、运动特性;空位和间隙原子形成与平衡浓度;位错的基本类型与表征、位错的运动与增殖、位错的弹性性质、实际晶体中的位错;界面、相界、孪晶界;位错及位错与其他晶体缺陷的交互作用。
d:相图:相图的基本规律、分析方法与应用;分析各种类型的二元相图及其晶体的结晶过程和组织;三元相图的基本知识。
2)材料力学性能部分
a:材料基本力学性能试验:(1) 掌握静载拉伸试验方法与拉伸性能指标的含义及测定,熟悉典型材料拉伸变形断裂行为与应力-应变曲线;(2) 熟悉压缩、弯曲、扭转试验原理、特点及应用,了解应力状态对材料力学行为的影响;(3) 掌握布氏、洛氏、维氏硬度试验原理、特点及应用范围。
b:材料变形行为与变形抗力:(1)掌握弹性变形行为及其物理本质,熟悉材料的弹性常数及其工程意义;(2)熟悉材料塑性变形行为及其微观机制,了解材料物理屈服现象;(3)了解材料的理论与实际屈服强度、微观与宏观屈服应力及宏观屈服判据;(4)了解材料强化的基本途径与常用方法。
c:材料断裂行为:(1)了解材料常见断裂形式及其分类方法;(2)熟悉金属延性断裂行为及微观机制;(3)熟悉解理和沿晶断裂行为及微观机制;(4)了解断裂的宏观强度理论。
d:材料的脆性及脆化因素:(1)了解材料脆性的本质及表现,熟悉微观脆性与宏观脆性的联系与区别;(2)熟悉缺口顶端的应力和应变特征,了解缺口试样拉伸行为及缺口敏感性;(3)了解冲击载荷特征与冲击变形断裂特点,掌握缺口试样冲击试验与冲击韧性的意义及应用;(4)了解材料低温脆性的本质及其评定方法。
e:材料裂纹体的断裂及其抗力:(1)了解材料的理论断裂强度,掌握Griffith强度理论及应用;(2)掌握线弹性断裂力学的基本概念与基本原理,了解裂纹尖端塑性区及其修正; (3)了解裂纹体的断裂过程与断裂韧性的测定及其影响因素。
f:材料的疲劳:(1)熟悉高周、低周疲劳行为,s-N与-N疲劳曲线及其经验规律,掌握疲劳抗力的意义及表征; (2)了解疲劳断裂过程、特征及微观机制;(3)掌握疲劳裂纹扩展的断裂力学处理思路与Paris方程;(4)了解材料疲劳抗力的影响因素。
g:材料高温力学性能:(1)了解高温下材料力学性能特点、高温蠕变行为、断裂过程及其微观机制;(2)掌握蠕变极限与持久强度指标的含义、评价方法及影响因素。
三、试卷结构
a)满分:100分 (材料结构与缺陷、材料力学性能各占50分)
b)题型结构
a:材料结构与缺陷部分(50分)
(1)概念题(名词解释、多项选择、填空、改错等)(10分)
(2)简答题(10分)
(3)计算题(10分)
(4)综合论述及应用题(20分)
b:力学性能部分(50分)
(1)基本术语解释(10分)
(2)多项选择(5分)
(3)简答题(15分)
(4)综合论述与计算题(20分)
四、参考书目
1.《材料科学基础》,胡赓祥、蔡珣主编,上海交通大学出版社,2000年
2.《材料科学基础》,潘金生、仝健民、田民波编,清华大学出版社,1998年
3.《材料的力学性能》(第2版),郑修麟主编,西北工业大学出版社,2000年
4.《材料力学性能》,石德珂、金志浩编,西安交通大学出版社, 1998年

第二组:“无机材料物理化学(选答)”部分考试大纲
(材料学学科,无机非金属材料方向选答部分)

一、 考试要求:
要求学生熟练掌握本大纲所求的内容,并能够利用相关原理,解决工程中所遇到的实际问题。
二、考试内容:
1)热力学第一定律:热力学第一定律、焓、热容、热力学第一定律对理想气体的应用、热化学。
2)热力学第二定律:熵的概念、熵变的计算、Helmholz自由能和Gibbs自由能、化学反应方向的确定、热力学对单组分体系的应用、偏摩尔量与化学势、化学势与化学平衡。
3)溶液:概念、拉乌尔定律、亨利定律、混合溶液各组分的化学势、混合气体各组分的化学势。
4)相平衡:相平衡条件、相律、水的相图、二组分相图的组成原理、杠杆规则、二元凝聚体系相图、形成化合物的二元相图;三组分体系相图的构成原理、三组分固熔体系相图分析。
5)化学平衡:化学反应的平衡条件、液相与气相的反应平衡常数、化学反应平衡常数与标准生成Gibbs自由能。
6)界面现象:表面自由能和表面张力、弯液面下的附加压力、弯液面上的蒸汽压、吉布斯吸附公式、润湿现象和接触角、表面活性剂。
7)热力学应用:热力学势函数及应用。
8)相变:液固相变热力学,液固相变动力学,均匀成核与非均匀成核。
9) 烧结:烧结过程动力学,烧结过程中的物质传递。
三、 试卷结构:
a) 满分:100分
b) 题型结构
a:选择题(20分)
b:问答题(30分)
c:计算题(50分)
四、 参考书目
《物理化学》,傅献彩、沈文霞、姚天扬主编,高等教育出版社,2000年
《无机材料科学基础》陆佩文 编著 武汉工业大学出版社,1996年

第三组:“高分子材料(选答)”部分考试大纲
(材料学学科,树脂基复合材料方向;材料物理与化学学科,高分子材料方向选答部分)

二、 考试要求:
要求学生熟练掌握本大纲所求的内容,并能够利用相关原理,解决实际问题。《高分子材料学》满分100分。
高分子化学部分
第一章 绪论
「掌握内容」
1. 基本概念:单体、聚合物、聚合反应、结构单元、重复单元、单体单元、链节、聚合度、均聚物、共聚物。
2.加成聚合与缩合聚合;连锁聚合与逐步聚合。
3. 从不同角度对聚合物进行分类。
4. 常用聚合物的命名、来源、结构特征。
5.线性、支链形和体形大分子。
6. 聚合物相对分子质量及其分布。
7.大分子微结构。
8.聚合物的物理状态和主要性能。
「熟悉内容」
1. 系统命名法。
2. 典型聚合物的名称、符号及重复单元。
3. 聚合物材料和机械强度。
第二章 自由基聚合
「掌握内容」
1.自由基聚合的单体。
2.自由基基元反应每步反应特征;自由基聚合反应特征。
3.常用引发剂的种类;引发剂分解动力学;引发剂效率;影响引发剂效率的因素;引发剂选择原则。
4.聚合动力学研究方法;自由基聚合微观动力学方程推导;自由基聚合反应速率常数;自动加速现象。
5.无链转移反应时的分子量;链转移反应对聚合度的影响。
6.影响聚合反应速率和分子量的因素(温度、压力、单体、引发剂)。
7.阻聚与缓聚。
8.聚合热力学。
「熟悉内容」
1. 热聚合、光引发聚合、辐射聚合。
2. 聚合过程中速率变化的类型。
3 自由基聚合的相对分子质量分布。
4.反应速率常数的测定。
第三章 自由基共聚合
「掌握内容」
1. 共聚合基本概念:
无规共聚物,接枝共聚物,交替共聚物,嵌段共聚物,竟聚率,恒比点。
2.共聚物的分类和命名。
3.二元共聚组成微分方程推导。
4. 理想共聚、交替共聚、非理想共聚(有或无恒比点)的定义,根据竟聚率值判断两单体对的共聚类型及共聚组成曲线类型。
5. 共聚物组成控制方法。
6.共聚物微观结构与链段分布。
7. 单体和自由基活性的表示方法,取代基的共轭效应、极性效应及位阻效应对单体和自由基活性的影响。
「熟悉内容」
1.共聚合的意义及典型共聚物。
2.影响竟聚率的因素和竟聚率测定方法。
3.共聚物的组成与转化率的关系。
4.多元共聚。
5.共聚合速率。
第四章 聚合方法
「掌握内容」
1. 四种聚合实施方法的基本组成及优缺点。
2. 悬浮聚合与乳液聚合的机理及动力学。
「熟悉内容」
1. 典型聚合物的聚合实施方法。
2. 聚合方法的选择。
第五章 阳离子聚合
「掌握内容」
1.阳离子聚合常见单体与引发剂。
2.阳离子聚合机理。
3.影响阳离子聚合因素 .
第六章 阴离子聚合
「掌握内容」
1.阴离子聚合常见单体与引发剂。
2.阴离子聚合机理,聚合速率及聚合度。
3.影响阴离子聚合因素。
4.活性阴离子聚合聚合原理、特点及应用。
5. 阳离子聚合、阴离子聚合、自由基聚合的比较。
第九章 逐步聚合反应
「掌握内容」
1. 逐步聚合的基本概念:
官能团,平均官能度,线形缩聚,反应程度,当量系数,体型缩聚,无规预聚物,结构预聚物,凝胶化作用,凝胶点。
2.缩聚反应的类型及典型聚合物的命名。
3. 逐步聚合反应的特点。
4. 逐步聚合官能团等活性理论。
5.缩聚反应聚合物分子量的控制。
6. 典型线性和体型缩聚物的合成方法。
7. 线形逐步聚合与体型逐步聚合的比较。
8. 逐步聚合与连锁聚合的比较。
「熟悉内容」
1. 线形逐步聚合动力学。
2. 缩聚物的分子量分布。
3. 影响聚合反应动力学方程的因素。 .
第十章 聚合物的化学反应
「掌握内容」
1. 聚合物化学反应的基本概念:
几率效应,邻近基团效应。
2. 聚合物与小分子反应活性的比较及影响因素。
3. 典型的聚合物的化学反应
聚乙酸乙酯的反应
芳香烃的取代反应
4.制备嵌段聚合物及接枝聚合物常用的方法。
5. 聚合物交联反应:橡胶的硫化、饱和聚烯烃的过氧化物交联。
6. 典型聚合物的热降解反应。
「熟悉内容」
1. 纤维素的反应、卤化反应、环化反应。
2. 光致交联固化。
3. 氧化降解、聚合物老化机理及老化的防止与利用。
4. 功能高分子的定义及主要种类。
高分子物理部分
第一章 高分子链的近程结构
「掌握内容」
1.化学组成:基团(极性与非极性),单体单元(均聚与共聚)及末端基;梯形与螺旋型结构。
2.键接结构:头-头(尾-尾)及头-尾结构。
3.构型(旋光异构,几何异构)。
4.支化与交联
「熟悉内容」
1.高分子链构型的测定方法。
第二章 高分子链的远程结构
「掌握内容」
1.基本概念:
均方末端距,高斯链,构象。
2.高分子链长、末端距的计算方法; 高分子链的柔顺性及本质。
「熟悉内容」
1.高分子链的旋转及构象统计。
第三章聚合物的聚集态结构
「掌握内容」
1.基本概念:
单晶,片晶,球晶,纤维状晶,串晶,伸直链晶体;结晶度,取向,取向度;内聚能密度,相容性。
2.Keller折叠链模型;无规线团模型;局部有序模型。
3.高分子链结晶动力学。
4.结晶度及取向的测定方法,液晶的表征。
5.高分子合金
「熟悉内容」
1.不同晶型的形成条件。
2.取向对聚合物材料的影响。
第四章 高分子的运动
「掌握内容」
1.高聚物分子运动的特点。
2.玻璃化转变。
4. 玻璃化温度与链结构的关系。
5. 玻璃态的分子运动。
6. 晶态高聚物的分子运动。
「熟悉内容」
1. 高聚物分子运动的研究方法。
第五章 高聚物的力学性能
一、高弹性
「掌握内容」
1.基本概念:
杨氏模量,切变模量,本体模量,熵弹性。
2.橡胶高弹形变的特点与本质。
「熟悉内容」
1. 橡胶弹性动力学分析及统计理论。
2.典型的热塑性弹性体。
二、聚合物的粘弹性
「掌握内容」
1.基本概念:
蠕变,应力松弛,动态粘弹性, 滞后与阻尼,Boltzmann叠加原理,时-温等效原理,松弛(迟后)时间及其松弛(迟后)时间谱。
2. 高分子材料(包括高分子固体,熔体及浓溶液)的力学行为特性,粘弹性本质。
3.描述聚合物粘弹性的力学模型及所描述的聚合物的力学过程。
「熟悉内容」
1. Maxwell模型与Voigt(或Kelvin)模型的数学推导。
2. WLF方程及应用。
3. 粘弹性的研究方法。
三、聚合物的屈服和断裂
「掌握内容」
1. 基本概念:
屈服应力,断裂应力,冲击强度,疲劳, 银纹,剪切带,脆性断裂,韧性断裂,应力集中。
2. 晶态、非晶态及取向聚合物应力-应变特点。
3. 聚合物的屈服与增韧机理。
4. 影响聚合物强度的因素与增强途径、机理。
「熟悉内容」
1. 断裂理论。
第六章 聚合物的电学性能、热性能、光学性能
「掌握内容」
1.基本概念:
介电极化,介电松弛,掺杂,压电系数, 焦电系数, 聚合物压电体。
2.高聚物的导电率、导电聚合物的结构与导电性。
3.高聚物的热稳定性、热膨胀、热传导,热变形温度。
4.折光指数,透明度,雾度,双折射,散射。
「熟悉内容」
1.高聚物的电击穿,高分子的静电现象。
第七章 高分子溶液
「掌握内容」
1.基本概念:
溶度参数,Huggins参数,θ温度,第二维利系数A2,聚合物增塑,凝胶,冻胶。
2.高分子的溶解过程;溶剂对聚合物溶解能力判定原则;高分子溶液与理想溶液的偏差;Flory-Huggins高分子溶液理论;Flory-Krigbaum稀溶液理论。
3.Huggins参数、θ温度及第二维利系数A2之间的关系;θ溶液与理想溶液。
4.高分子浓溶液及应用。
「熟悉内容」
1. Flory-Huggins晶格理论的假定条件及局限性。
第八章 聚合物的分子量和分子量分布
「掌握内容」
1.基本概念:
相对粘度,增比粘度,比浓粘度,比浓对数粘度,特性粘度,数均分子量、重均分子量、粘均分子量、Z均分子量。
2.聚合物分子量的统计意义;常用的统计平均相对摩尔质量。
3.相对摩尔质量分布宽度及表示方法。
4.聚合物分子量的测定原理;不同测定方法的适用范围。
5.特性粘度和相对摩尔质量的关系。
6.高分子的分级方法。
参考书目
1、潘祖仁编,《高分子化学》(第三版),化学工业出版社,2004.
2、何曼君等编,《高分子物理》(第二版),复旦大学出版社,2000.

第四组:“复合材料基础(选答)”部分考试大纲
(航天学院材料学学科,复合材料方向选答部分)

一、考试要求
复合材料基础满分为100分。主要考察学生对材料科学和复合材料学基础知识的掌握程度。
二、考试内容
1)复合材料的基本概念及原理
a:基本概念
b:分类方法
c:性能特点
d:基本设计原理
2)复合材料的基体
a:聚合物
b:金属
c:陶瓷
3)复合材料的增强相的形态及制造工艺
a:纤维
b:颗粒
4)复合材料的界面
a:基本概念
b:粘结机制
c:陶瓷相变增韧
5)聚合物基、金属基和陶瓷基复合材料
a:聚合物基复合材料的制造工艺、性能特点及应用
b:金属基复合材料的制造工艺、性能特点及应用
c:陶瓷基复合材料的制造工艺、性能特点及应用
6)复合材料的性能分析及测试
a:性能分析
b:性能测试
三、试卷结构
a) 满分:100分
b) 题型结构
a:概念题(20分)每题4分,共5题。
b:简答题(40分)每题8分,共5题。
c:论述题(40分)每题20分,共2题。
四、参考书目
1.《复合材料概论》,王荣国、武卫莉、谷万里编著,哈尔滨工业大学出版社,2003年1月
2.《高性能复合材料学》,郝元凯、肖加余编著,化学工业出版社,2004年1月

第五组:“固体物理(选答)”部分考试大纲
(材料物理与化学学科,材料物理与化学方向选答部分)

一、考试要求
要求考生系统地掌握固体物理的基本概念和基本原理,并能利用固体物理的基本原理分析固体的物理性能。要求考生对晶体结构与晶体结合、晶格热振动及固体的热性质、固体电子论(特别是能带结构)等基本原理有很好的掌握,并能熟练应用固体物理的基本原理分析固体的导电性质与磁性质等物理性质。
二、考试内容
1)固体结构与固体结合
a:晶体结构
b:晶体衍射与倒易点阵
c:布里渊区
d:固体键合的物理本质
2)晶格热振动及晶体的热性质
a:格波,声学和光学格波,声子
b:固体比热
c:固体热传导
3)自由电子理论及能带理论
a:费米面
b:霍尔效应
c:固体能带的基本概念
d:导体、绝缘体和半导体的物理本质
4)半导体晶体
a:半导体的有效质量
b:p型和n型半导体
c:载流子浓度
d:p-n结
三、试卷结构
a)满分:100分
b)题型结构
a:概念及简答题(40分)
b:论述题(60分)
c)内容结构
a:固体结构与固体结合(15分)
b:晶格热振动及晶体的热性质(30分)
c:自由电子理论及能带理论(30分)
d:半导体晶体(25分)
四、参考书目
《固体物理学》,黄昆原著、韩汝琦改编,高等教育出版社

第六组:“金属学与热处理(选答)”部分考试大纲
(材料加工工程学科,材料加工工程方向选答部分)

一、 考试要求
要求考生全面、系统地掌握“金属学与热处理”课程的基础理论,基本知识和基本技能,并能灵活运用金属学热处理理论分析和解决工程实际的问题的综合能力。
二、考试内容
1)金属学理论
a:金属与合金的晶体结构及晶体缺陷
b:纯金属的结晶理论
c:二元合金相图及二元合金的结晶
d:铁碳合金及Fe-Fe3C相图
e:三元合金相图
f:金属的塑性变形理论及冷变形金属加热时的组织性能变化
2)热处理原理及工艺
a:钢的加热相变理论
b:钢的冷却相变理论
c:回火转变理论
d:合金的时效及调幅分解
e:钢的普通热处理工艺及钢的淬透性
三、试卷结构
a)满分:100分
b)题型结构
a:基本知识与基本概念题 (约20分)
b:理论分析论述题(约40分)
c:实际应用题(约20分)
d:计算与作图题(约20分)
c)内容结构
a:金属学理论(约60分)
b:热处理原理及工艺(约40分)
d)试题形式
a:选择题
b:判断题
c:简答与综合题等
四、参考书目:
《金属学与热处理原理》,崔忠圻、刘北兴编,哈尔滨工业大学出版社,2004年修订版

⑵ 物理公式

【力 学 部 分】

1、速度:V=S/t
2、重力:G=mg
3、密度:ρ=m/V
4、压强:p=F/S
5、液体压强:p=ρgh
6、浮力:
(1)F浮=F’-F (压力差)
(2)F浮=G-F (视重力)
(3)F浮=G (漂浮、悬浮)
(4)阿基米德原理:F浮=G排=ρ液gV排
7、杠杆平衡条件:F1 L1=F2 L2
8、理想斜面:F/G=h/L
9、理想滑轮:F=G/n
10、实际滑轮:F=(G+G动)/ n (竖直方向)
11、功:W=FS=Gh (把物体举高)
12、功率:P=W/t=FV
13、功的原理:W手=W机
14、实际机械:W总=W有+W额外
15、机械效率: η=W有/W总
16、滑轮组效率:
(1)η=G/ nF(竖直方向)
(2)η=G/(G+G动) (竖直方向不计摩擦)
(3)η=f / nF (水平方向)
【热 学 部 分】
吸热:Q吸=Cm(t-t0)=CmΔt
2、放热:Q放=Cm(t0-t)=CmΔt
3、热值:q=Q/m
4、炉子和热机的效率: η=w有/Q燃料
5、热平衡方程:Q放=Q吸
6、热力学温度:T=t+273K
【电 学 部 分】
电流强度:I=Q电量/t
电阻:R=ρL/S
欧姆定律:I=U/R
焦耳定律:
(1)Q=Iˆ2Rt普适公式)
(2)Q=UIt=Pt=UQ电量=Uˆ2t/R (纯电阻公式)
串联电路:
(1)I=I1=I2
(2)U=U1+U2
(3)R=R1+R2
(4)U1/U2=R1/R2 (分压公式)
(5)P1/P2=R1/R2
并联电路:
(1)I=I1+I2
(2)U=U1=U2
(3)1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)]
(4)I1/I2=R2/R1(分流公式)
(5)P1/P2=R2/R1
7定值电阻:
(1)I1/I2=U1/U2
(2)P1/P2=I12/I22
(3)P1/P2=U12/U22
8电功:
(1)W=UIt=Pt=UQ (普适公式)
(2)W=Iˆ2Rt=Uˆ2t/R (纯电阻公式)
9电功率:
(1)P=W/t=UI (普适公式)
(2)P=Iˆ2R=Uˆ2/R (纯电阻公式)
10.电磁波: c=λf

⑶ 物理化学题急急急

不知道你是哪个专业的学生?这个题目很简单啊!你看书不够细致。请看书288页,气相、液相组成是摩尔分数来的。题中水和醋酸的量分别各为500 mol。对醋酸使用杠杆规则,可计算得到液相的量为653.5 mol,气相的量为346.5 mol。液相中醋酸的量为653.5*0.544 mol,剩下的是水的量,可以得到液相质量,同理得到气相质量。记得下次好好看书!

⑷ 相图及相关概念

(一)体系与平衡体系

热力学把从整体中孤立出来的研究对象称为体系,体系以外与体系有关的部分称为环境。体系的划分因研究目的的不同而有差别。以火成岩研究为例,如果要研究长石环带的成因,我们就需要把单个的长石环带孤立出来,而在此环带形成之时,与长石平衡共生的熔体以及其他的晶体相都属于环境。但如果要研究岩浆的结晶演化过程,那么整个岩浆房内的岩浆物质都属于体系,整个围岩系统就是环境。

体系的划分有多种方案,按照体系与环境之间物质和能量的交换情况,可划分为封闭体系、开放体系和孤立体系。与外部环境之间只有能量交换而没有物质交换者,属于封闭体系;两者均有交换者称为开放体系;两者均没有交换者称为孤立体系。根据体系内部的热力学平衡状态,又可分为平衡体系和非平衡体系。平衡体系是以其最低能量状态同外加条件相一致的体系,其内部丝毫没有自发地发生变化的趋势。非平衡体系则是指体系正在变化或具有某种变化趋势。一个体系不是处于平衡就是处于非平衡状态。在平衡体系中存在可预见的热力学规律,因此是热力学研究的重点。同样,体系还可以分为稳定体系、亚稳定体系与不稳定体系。稳定体系即平衡体系;亚稳定体系则是看起来处于平衡,但实际体系并未处于最低能量状态。许多致密矿物,如金刚石、蓝晶石、硬玉或柯石英,仅在压力高于1at时才真正稳定。之所以能在亚稳定条件下继续存在,是因为在低温低压下反应速率极其缓慢的缘故。同样地,许多高温下生成的矿物,如透长石或方石英,在室温下是亚稳定的。不稳定体系是指矿物或矿物共生体正在向更稳定的结构状态发生转变的体系。

(二)相律与相图

体系中物理性质和化学性质完全均匀一致的部分称为一种 “相”。相与相间存在界面,可用机械的方法把它们分离。可见,体系中具有确定成分的一种矿物就是一种相,均匀的熔体也是一种相。但若熔体之间不混熔则构成了不同的相。

在一个平衡体系中,平衡共生的相数受系统组成和外界环境变化的控制。相数与系统组分数及自由度数之间的内在关联就是吉布斯相律的内涵。这里的自由度数是指能够独立变化而不改变系统原有相数的变量数。

如果体系内各个相的化学组成可以用C种化学物质来表达,且C是所有可能性方案中数目最小的那种选择,我们称C为最小独立组分数。于是每种相的组成都可以以摩尔分数的形式表达为X1,X2,X3,…,Xc,且∑Xi(i=1,2,…,C)=1。下面来分析该体系中的变量数目。体系的外部变量一般设定为2,即只考虑温度和压力变化,适用于封闭系统。体系的内部变量则体现在各个相的化学组成变化上。若体系中存在P个相,那么就存在P(C-1)个独立组分变量,因为每个相中所有组分的摩尔分数和为1,实际上只有C-1个独立摩尔分数能够作为变量。如此可知体系的独立变量数为2+P(C-1)。

然而,在平衡体系中各相之间不存在任何物质转移,每一种组分在体系各相(a,b,c,…,p)中的化学势相等。换言之,对于P种相中的任意组分i而言,其在各相中并不能独立变化,而是受P-1个关系式制约。那么,整个体系中可以独立变化的变量数就应该减少C(P-1)。因此,体系的自由度应该是F=[2+P(C-1)]-[C(P-1)],或者F=2+C-P。

请注意,数字2代表的是变量温度与压力,适用于封闭体系。如果是开放体系,需要考虑到外界物质的带入与带出,此时数字应大于2。另一方面,如果压力(或是温度)确定了,或是恒定不变,那么F=1+C-P,如果压力和温度都确定了,那么F=C-P。

相图也称相态图或相平衡状态图,是用来表示平衡体系中组成、共生相与其他变量(如温度、压力)之间关系的图解。相图一般只能表示两个参数的情况,即压力-温度,压力-成分或温度-成分。三个或多个变量的相图只能在特殊的投影下才能表示出来。在岩石学研究中我们常常借助相图来说明岩石的结晶或反应过程。另一方面,达到了平衡态的矿物组合往往也能反映结晶过程中物理化学条件的变化,因此相图分析是一种非常有用的研究手段。需要说明的是,相图与相律涉及较多的实验岩石学与热力学知识,读者可以参考相关教材和参考书目(例如,周珣若和王方正,1987;周金城和王孝磊,2005;邓晋福,1987;Ernest,1981中文版等)。

(三)一元体系:纯相熔融与同质多象

一元系是指研究对象只有一种纯物质,即独立组分数C=1。根据相律公式,F=1-P+2=3-P,因此相数最多不超过3,自由度不超过2。这里我们以无挥发分的SiO2相图为例加以说明。

SiO2一元系(图5-1)有重要的地质意义。在SiO2一元系中存在七个相,即SiO2的六个同质多相变体(α-石英、β-石英、鳞石英、方石英、柯石英、斯石英)和熔体相。每个矿物或熔体的稳定区域称为 “双变域”,在每个双变域内,P=1,自由度F=3-1=2,意味着压力、温度两个变量可以在一定的范围内独立变化而不改变体系的相组成。双变域被“单变线” 隔开,在单变线上两个相邻矿物或熔体与矿物共存。在单变线上,P=2,自由度F=3-2=1。这意味着要保持两个相邻相共存,就只有一个变量可以独立变化。因此温度和压力要保持协变关系,二者之间的关系就是单变线的几何方程。三条单变线或三个双变域交会的点为三相共存的点。该点上,P=3,C=1,即F=0,所以,此点是温度、压力都不能独立变化的 “不变点”。

图5-1 SiO2一元系相图(据Blatt & Tracy,1996)

石英的同质多象体广泛分布于地壳之中。鳞石英和方石英只会出现在低压高温的火山环境之中。在地壳岩石中要找到高压的柯石英是非常困难的,其主要见于高压-超高压变质带中。另外,在陨石撞击成因的富硅质的岩石中也找到了柯石英和斯石英。前者是因为高压-超高压岩石可能曾经进入到地幔深处,后者则与陨石撞击时产生的瞬时高压有关。当高压-超高压变质的柯石英折返到地壳层次后,会发生不同程度的退变质而转化为石英。

(四)二元体系

二元系有两个独立组分,即C=2。如果只考虑温度或压力其中之一的影响,则其相律公式为:F=2-P+1=3-P,相数P的变化范围为1~3,自由度F的变化范围为0~2。常见的二元相图类型有低共熔系,一致分解熔融系,液态、固态有限及无限混熔系等。二元系相图判读方便,在分析岩浆结晶过程、矿物共生组合、岩石结构及成因方面有重要意义。本节仅介绍两个较为常用的二元系相图,并说明相图的解读方法。

1.透辉石(Di)-钙长石(An)二元系

透辉石(Di)-钙长石(An)二元体系由鲍文在1915年首次阐述,已经成为经典的二元系相图,可以用来理解玄武质岩浆中斜长石与辉石结晶的简单模型(图5-2)。请注意,在这个二元体系中,二组分的化学表达式与晶体相的化学式完全一致。但在大多数体系中,相的化学式与系统组分的化学表达式是不同的。

图5-2 一个标准大气压下(P=105Pa)

透辉石-钙长石二元系相图(据Yoder,1976)

为了更深入地理解二元体系,必须熟悉一些特别线条的含义与规则。相图中表示熔融完全结束或者是结晶刚刚开始的曲线称为液相线(liquis)。与之对应,表示熔融刚刚开始或者是结晶完全结束的曲线称为固相线(solis)。垂向的等值线指示体系的化学组成。在图5-2中表示为纵向的线落在90%处,具体的含义是体系由90%的钙长石(An)和10%的透辉石(Di)组成。等温线也叫等热线,在图中是一条水平线。

组成为An =90% 的体系在1400℃下共生的两个相为熔体+钙长石晶体。此时熔体的化学组分又是多少呢?熔体与晶体的比值又是多少呢? 回答这两个问题,必须认识到等温线与液相线相交于L点,与右纵轴交于S点,图中分别以空心圆与实心方形表示。介于L点与S点间的线段称为连接线,它将两个稳定共生相通过点线联系起来。点S代表钙长石晶体,点L代表1400℃时与钙长石共生的熔体的组成,作一条过点L的垂向等值线与横轴相交,可得到熔体的组分由62%的钙长石和38%的透辉石组成。

L相与S相的相对比值可运用杠杆法则来确定。具体方法如下:等温连接线上的点S与点L各自代表了1400℃下共生的固态相与液态相。想象这条线是一个置于支点上的机械杠杆,两端分别有S与L。平衡实际上就类似儿童游乐园里的跷跷板,固态相的质量分数S乘以其杠杆臂长y必等于液态相的质量分数L乘以它的杠杆臂长x,即S×y=L×x。固体相和液体相质量分数之和为100%,即S+L=1,得到S×y=(1-S)×x=x-S×x或S=x/(x+y)。因此,我们测量图5-2中的距离x与y,并且计算出比值为0.72,此比值就是固态相钙长石晶体在1400℃下的质量分数。即晶体占72%,剩下的28%是熔体。注意例子中的成分点与固态相点S的距离较其与液态相点L的距离更近,相应地晶体的比例较熔体而言更高。随着温度的不断下降,晶出的钙长石量不断增加,而剩余的熔体成分不断朝富透辉石组分的方向演化。

当熔体组分演化到E点时,透辉石与钙长石同时晶出,因而被称为共结点。此时体系由钙长石、熔体的两相共生转变为钙长石晶体、透辉石晶体与熔体的三相共生。当P确定时,根据相律F=1+C-P=1+2-3=0。这表明共结点E是等压二元图解中唯一的一个不变点。在E点所有变量都必须是确定,即压力P=1atm,T=1274℃。此时熔体的成分为XL=An42Di58。

透辉石-钙长石体系可以看成玄武质岩浆结晶过程的简单模型。含有较多钙长石组分的岩浆在液相线处会首先结晶出钙长石,从完全的液态相变为液态相+钙长石结晶相。在一段温度范围内,钙长石持续不断地结晶。当温度降低至共结点处时,透辉石也开始晶出。可以料想,这种成分的玄武岩会由高温的钙长石斑晶与细小的含有辉石的基质组成。而如果岩浆更富含透辉石组分的话,玄武岩则可能会由辉石斑晶与含有钙长石的细小基质组成。

2.镁橄榄石(Fo)-SiO2二元系

该二元系(图5-3)的熔融过程可分为两种情况:不一致熔融与一致熔融。一致熔融是指一种固体熔融后形成一种同成分的液相。不一致熔融则是指某结晶相在温度升高时并不直接熔出成分一致的熔体,而是转变为另一种固相和熔体,后两者与原来的固相成分不一致。结晶过程则恰好相反,随着温度的降低,熔体与一种早期结晶相反应生成一种新的具有不一致熔融性质的晶体。在岩浆冷却过程中,若温度下降得足够快,即在熔体与早期结晶的矿物反应完成之前总体系就已经凝固,这种反应关系就可以被保存下来,可以观察到反应生成的新矿物以反应边的形式环围在早期结晶的矿物相之外。

图5-3 一个标准大气压(P=105Pa)下镁橄榄石-石英二元系相图(据Bowen & Anderson,1914,修改)

当图5-3a中成分为X的熔体冷却到温度T1时,纯镁橄榄石开始结晶。随着进一步的冷却,镁橄榄石逐渐析出,使熔体变得更加富SiO2,直至体系温度下降到T2到达近结点(或转熔点),此时成分为L2的熔体和与纯镁橄榄石平衡共存。近结点是固体与熔体间的反应点。在更高温下矿物与熔体可以共存,但在较低温下要发生反应。因此,继续冷却将导致镁橄榄石与富SiO2熔体发生反应,生成顽火辉石。直至全部熔体耗尽,系统转变为镁橄榄石和顽火辉石共生。如果熔体较顽火辉石略微富SiO2,如图5-3b中成分为Y的熔体,冷却到温度T4时镁橄榄石开始晶出。随着温度的逐渐下降,镁橄榄石不断析出,剩余熔体变得越来越富SiO2,直至体系到达温度T5。在温度为T5时,与成分为X的熔体演化的情况相同,镁橄榄石与富SiO2熔体L2反应形成顽火辉石,如果体系温度能在T5保持足够的时间,所有的镁橄榄石都将反应殆尽。至T5的稍下方开始,大量顽火辉石从熔体中结晶,体系进入顽火辉石和熔体共存区。最后温度达到T6时,体系由顽火辉石和共结点成分的熔体组成。此时SiO2矿物开始晶出。进一步降温则导致剩余熔体彻底结晶成顽火辉石和SiO2矿物。

值得注意的是,镁橄榄石先结晶,但不出现于最终矿物中,如果冷却不是在近于平衡的条件下缓慢进行,而是快速进行,以致橄榄石没有足够时间与熔体彻底反应,那么部分反应将在橄榄石颗粒的边部形成顽火辉石环边。这是鲍文反应系列的实例。

其他常用的二元相图包括:透辉石(Di)-钠长石(Ab)系、钠长石(Ab)-SiO2系、霞石(Ne)-SiO2系、白榴石(Lc)-SiO2系、钠长石(Ab)-钙长石(An)系等,它们都包含有具体的岩石学意义,读者可参考有关书目,进行进一步的学习。

图5-4 具有低共熔点的三元立体示意相图(据周珣若和王方正,1987)

(五)三元体系

三元系相图较一元系和二元系相图复杂,判读亦较难。这里仅介绍最简单的具三元低共结点的三元系相图,它的特点是组成体系的各组分在液态时完全混熔,在固态时完全不互熔,也不形成中间化合物,具有一个三元低共结点。

1.立体相图的构成要素及底面投影

图5-4所表示的是一个三面棱柱体状的立体示意相图。底面为一个浓度三角形,由端元组分A、B、C以任意比例组成的体系在此三角形中均可表达为一个成分点。垂直坐标为温度。A′、B′、C′分别代表三端元组分A、B、C的熔点。三个棱面分别代表A-B、B-C、C-A三个二元系,E1、E2、E3分别为这三个二元系的共结点。如果已知任何不同比例的三元混合物完全熔融到液相时的温度(也即从岩浆中开始析晶的温度),以此温度和对应的体系成分为坐标,在这个三面棱柱体内进行空间投影即可得到三个液相 面也称液相面。在这三个液相面上,开始晶出的固相分别为A、B、C相,因此,称之为A始(首,初)晶面(区)、B始(首,初)晶面(区)、C始(首,初)晶面(区)。

根据熔点降低原理,当二元系中加入第三组分后,低共熔点亦随之降低。随着加入量的增多,低共熔点不断下降。因此,在三元系相图内形成的三个液相面汇集于E′点,即三元低共熔点。三条低共熔曲线E!E′、E!E′、E!E′,就是三个液相面之间的交线。在低共熔曲线上,液相与两个固相相处于平衡,三相共存,自由度F=3-3+1=1。在三元低共熔点(E′点),组成为E′的液相与A、B、C三个固相处于平衡,四相共存,自由度F=3-4+1=0,三元低共熔点是整个系统存在液相的最低温度点。

由于立体图在使用上比较麻烦,因此经常用在底面等边三角形上的垂直投影图表示三元相系的相图。如图5-4所表示,底面三角形的边分别代表A-B、B-C、C-A三个二元体系,e1、e2、e3分别代表它们的共结点, 别代表液相面 的投影,e1E、e2E、e3E分别代表低共熔线E1E′、E2E′、E3E′的投影,E代表三元低共熔点E′的投影。

图5-5 具三元低共熔点的三元系结晶过程分析示意图(据周珣若和王方正,1987)

投影图上表示温度的方法如下:(1)将一些固定点的温度(如熔点、低共熔点、一致熔融点、分解熔融点等)直接标在图上。(2)低共熔线上的箭头表示温度下降的方向,三角形边上的箭头表示二元体系中液相线温度下降的方向。(3)通过立体图的温度坐标,以一定温度间隔t′1、t′2作平行于底面的等温面(图中的扇形面),这些等温面与液相面相交得到等温线(a′1C′1,a′2C′3…),在底面投影图中t1、t2等温线。显然,等温线的疏密反映了液相面的缓陡。

2.结晶过程分析

根据图5-4及图5-5,假设原始岩浆成分点为M点,位于首晶区内,它的开始状态由M′点表示。在降温过程中,由M′点降到液相面上的L1点,L1是t1′等温线a1′C1′上的一点,此时,C开始晶出。随着温度的下降,液相线将沿着L1-L2-L3曲线(CC′线与CM线所组成的平面与液相面的交线)移动,即沿投影图上CM连线的延长线MD移动(析出关系)。在此过程中,只有C晶出,自由度F=3-2+1=2,液相中组分C的含量不断改变,而组分A与B的量比保持不变。当温度降到L3点(投影图中的D点)时,即到达低共熔线E3E′时,则A亦晶出,此时,C、A、L三相共存,自由度F=3-3+1=1。温度继续下降,液相组成将沿L3E′曲线(投影图中的DE曲线)方向变化,固相组成将沿CF方向变化。当液相刚刚到达E′点(投影图中的E点)时,固相的总体组成变化到F点,其中C与A的晶出量的比值为AF:FC。在E′点由于B也晶出,所以C、A、B、L四相共存,自由度F=3-4+1=0。在E′点晶出过程中,液相量逐渐减少,但其组成不变。而固相的组成,由于除了C、A之外又有B的晶出,因此,从F点向M点变化,也就是从三角形的边上移到三角形内,直至岩浆全部耗尽,结晶过程全部结束。最后,晶出C、A、B三固相的总体组成。与原始岩浆成分M点一致。

总之,液相组成变化为M→D→E;固相总体组成变化为C→F→M。

在结晶过程中,固与液相之量比如下:

(1)当液相组成刚刚到达D点时,液相:固相(C)=CM:MD。

(2)当液相组成刚刚到达E点时,液相:固相(C+A)=FM:ME,C:A=AF:FC。

⑸ 谁能给一下大学物理化学的应考公式和概念啊!

俄滴神哪~楼上那位仁兄还真是搞笑啊~~呵呵呵~~~
1. 气体的性质
1.1理想气体状态方程
1.2理想气体混合物
1.3真实气体状态方程(范德华方程)
1.4气体的液化及临界参数
1.5对比参数、对应状态原理及普遍化压缩因子图
2. 热力学基础
2.1热力学基本概念
2.2热力学第一定律
2.3恒容热、恒压热、焓
2.4热容、恒容变温过程、恒压变温过程
2.5热力学第一定律在单纯状态变化(等温、等压、等容、绝热、节流膨胀)过程中的应用
2.6热力学第一定律在相变化变化(可逆相变、不可逆相变)过程中的应用
2.7 化学计量数、反应进度
2.8标准摩尔生成焓、标准摩尔燃烧含及由标准摩尔生成焓和标准摩尔燃烧焓计算标准摩尔反应焓变
2.9盖斯定律及其应用
2.10卡诺循环
2.11熵、热力学第二定律及自发性的判断
2.12单纯pVT变化熵变的计算
2.13相变过程熵变的计算
2.14热力学第三定律和化学变化过程熵变的计算
2.15亥姆霍兹函数和吉布斯函数及其函数変计算
2.16热力学函数关系式
3.化学平衡
3.1偏摩尔量和化学势
3.2气体组分的化学势
3.3化学平衡条件与理想气体化学反应的标准平衡常数
3.4化学反应的等温方程
3.5多项反应的化学平衡
3.6温度对标准平衡常数的影响
3.7温度、压力、浓度、惰性组分等因素对理想气体化学平衡的影响
3.8逸度与逸度因子
3.9真实气体反应的化学平衡及压力对真实气体化学平衡的影响
3.10平衡常数及平衡组成的计算
4.相平衡
4.1相律
4.2单组分两相平衡时温度与压力的关系
4.3水的相图
4.3拉乌尔定律和亨利定律
4.4理想液态混合物、理想稀溶液及稀溶液的依数性
4.5活度及活度因子
4.6液态多组分系统中各组分的化学势
4.7杠杆规则
4.8二组分理想液态混合物的气-液平衡相图
4.9二组分真实液态混合物的气-液平衡相图
4.10二组分液态部分互溶系统的液 - 液平衡相图
4.11简单二组分凝聚系统相图
4.12生成稳定化合物与不稳定化合物的二组分凝聚系统相图
4.13二组分固态部分互溶系统液-固平街相图
4.14二组分固态互溶系统液-固平衡相图
4.15三组分系统液-液平衡相图
5.统计热力学基础
5.1独立子系统、相依子系统、离域子系统
5.2粒子各种运动形式的能级及能级的简并度
5.3能级分布分布与状态分布
5.4微态数及系统的总微态数
5.5等几率原理、最概然分布与平衡分布
5.6玻耳兹曼分布
5.7粒子配分函数的析因子性质及粒子配分函数的计算
5.8系统的热力学能与配分函数的关系
5.9系统的摩尔定容热容与配分函数的关系
5.10系统的熵与配分函数的关系
5.11其它热力学函数与配分函数的关系
5.12理想气体反应的标准平衡常数
6.电化学
6.1电解质溶液的导电机理及法拉第定律
6.2离子的迁移数
6.3电导、电导率和摩尔电导率
6.4电导测定在电解质解离度及解离常数、难溶盐溶解度计算中的应用
6.5强电解质的活度和活度因子
6.6离子强度、德拜-休克尔极限公式
6.7可逆电池及其表达式
6.8可逆电池电动势的测定
6.9可逆电池热力学
6.10电动势的产生
6.11电极电视机电极反应的能斯特方程
6.12电极的种类及电动势计算
6.13电动势测定的应用(氧化还原反应的平衡常数、难溶盐溶度积及溶液pH的确定)
6.14电化学反应速率与电流密度
6.15分解电压与析出电势
6.16极化作用与超电势
6.17超电势测定与计划曲线
6.18电解时的电极反应
6.19电化学腐蚀与防护
7.界面现象与胶体
7.1界面张力与表面积不是吉布斯函数
7.2弯曲液面的附加压力与弯曲液面的蒸汽压
7.3溶液的表面吸附与吉布斯吸附等温式
7.4表面活性剂及种类
7.5气固表面上的吸附与兰格缪尔吸附等温式
7.6液-固界面现象与液-液界面现象
7.7胶团的结构、胶体的性质及稳定性
8.化学动力学
8.1化学反应的反应速率的表示及测定
8.2速率方程与数率常数
8.3简单级数反应的动力学方程
8.4速率方程的确定
8.5典型复合反应的动力学特征
8.6复合反应动力学处理的近似方法
8.7链反应动力学
8.8温度对反应速率的影响
8.9气体反应的碰撞理论
8.10溶液反应、催化反应及光化反动力学
二、考试要求
1. 气体的性质
掌握理想气体状态方程和混合气体的性质(组成的表示、分压定律、分容定律)。了解实际气体的状态方程(范德华方程)。了解实际气体的液化,临界性质。了解对应状态原理与压缩因子图。
2. 热力学基础
理解系统、环境、平衡态、状态函数、可逆过程等基本概念。掌握状态函数及可逆过程的意义和特点。明确功和热与过程有关及其传递方向以正、负号表示。
明确热力学能、焓、熵、吉布斯函数、亥姆霍兹函数、标准生成焓、标准熵及标准生成吉布斯函数的定义。掌握熵的统计意义。
理解热力学第一、第二、第三定律的文字表述、数学表达式及意义。掌握用熵、吉布斯函数、亥姆霍兹函数判别过程变化的方向及限度的方法。掌握在物质的PVT变化、相变化及化学变化过程中热、功和各种状态函数变化值的计算。能熟练运用热容、标准生成焓、标准燃烧焓、标准熵、相变热、蒸气压等热热力学数据及盖斯定律和基尔霍夫定律进行一系列计算。了解卡诺循环的意义。
理解并会用热力学基本方程。了解麦克斯韦关系式的推导。
3. 化学平衡
理解偏摩尔量及化学势概念。明确标准平衡常数的定义。了解等温方程和等压方程的推导,并掌握其应用。
会用热力学数据计算平衡常数及平衡组成。能判断一定条件下化学反应可能进行的方向。分析温度、压力、组成等因素对平衡的影响。
了解同时平衡及处理方法。
了解逸度和逸度因子的概念及其简单计算。了解实际气体化学平衡。
4.相平衡
理解相、组分数、自由度及相律的意义并会应用相律。
理解拉乌尔定律、亨利定律和稀溶液的依数性,并掌握其有关计算。
了解液相多组分系统中各组分化学势的表达式。
了解活度和活度因子的概念及活度的简单计算。
掌握水的相图、克拉佩龙方程和克拉佩龙-克劳休斯方程,并会用这两个方程进行有关计算。
以二组分气-液相平衡的P-X图、T-X图及简单共熔物的二组分液-固系统相
平衡图为重点掌握相图的绘制及其应用。能用杠杆规则进行分析与计算。
了解三组分系统液-液相图的绘制。
5. 统计热力学基础
了解统计热力学的基本假定。掌握统计热力学的基本术语。
理解玻尔兹曼分布的意义并会用玻尔兹曼公式于有关计算。
明确配分函数的意义及配分函数的析因子性质。掌握粒子配分函数的计算方法。
理解热力学函数与粒子配分函数的关系。掌握用吉布斯自由能函数及焓函数计算理想气体反应的标准平衡常数的方法。
6. 电化学
理解电导率、摩尔电导率的定义及离子独立运动定律,掌握电导率计算、离子独立移动定律及电导测定的一些应用。
理解离子强度、离子平均活度及平均活度因子的概念。了解离子氛的概念,会用德拜-休克尔极限公式。
理解电解质的活度及活度因子的意义及其计算方法。并会使用德拜-休克尔极限公式。
明确可逆电池的含义,掌握电池表达方法。
明确温度对电动势的影响,掌握电池电动势E的测定在计算电池反应的△rGm、△rHm、△rSm、平衡常数、电解质溶液活度及溶液pH方面的应用。
掌握标准电极电势的概念。能熟练地应用能斯特方程计算电极电势和电池的电动势。
明确分解电压和析出电势的含义。了解极化及其产生原因,明确超电势的概念。了解浓差超电势和活化超电势的概念,掌握明确电解时的电反应。
7.界面现象与胶体
明确液体表面张力和比表面吉布斯函数的概念。了解表面张力与温度的关系。理解润湿、接触角、附加压力、弯曲液面蒸汽压等概念及其与表面张力的关系,掌握拉普拉斯方程和开尔文公式的应用及杨氏方程和毛细现象的有关计算。
了解溶液界面的吸附及表面活性剂结构特性、分类及其应用。理解吉布斯吸附等温式并会应用。
了解物理吸附与化学吸附的含义和区别。理解兰格缪尔单分子层吸附理论,掌握兰格缪尔吸附等温式。
了解胶体的动力性质、光学性质、电学性质,掌握胶团的结构,了解溶胶稳定性特点及电解质对溶胶稳定性的影响,能判断电解质聚沉能力的大小。
8. 化学动力学
理解反应速率、消耗速率和生成速率的定义,明确基元反应、速率常数、反应级数、反应分子数等基本概念,掌握质量作用定律及其适用范围。
掌握具有简单级数的反应的动力学方程和特征,并能够由实验数据确定简单反应的级数,建立速率方程。
理解典型复合反应(对峙反应、平行反应和连串反应)的特征及其动力学处理方法。会用定态近似法、平衡态近似法、选取控制步骤法等复合反应动力学处理中的近似方法。了解链反应的特点及爆炸的原因。
明确温度、活化能对反应速率的影响,理解阿仑尼乌斯经验式中各项的含义,熟练运用理解阿仑尼乌斯经验式计算Ea、A、k等物理量。掌握催化作用的特点。对溶液反应、酶催化反应、气-固相催化反应、光化学反应的动力学有一般的了解。
ps:以上为某校物化考研大纲。虽说是考研,但都较基本,值得参考一下。
推荐书目:1《物理化学》(第二版),王光信、刘澄凡、张积树编,化学工业出版社,2001年。
2《物理化学》(第四版),天大物化教研室编,高教出版社,2006。

⑹ 测量密度的方法

密度的测量

(1)常规法(天平量筒法)

测固体密度:不溶于水(密度比水大ρ=m/v天平测质量,排水法测体积;密度比水小,按压法、捆绑法、吊挂法、埋砂法)。

溶于水;饱和溶液法、埋砂法

测液体密度:ρ=m/v天平测质量,量筒测体积

注意事项:天平的使用(三点调节,法码、游码使用法则),m、v测量次序,量筒的选择。

(2)仅有天平测固体(溢水法)

m溢水=m1-m2、v溢水=(m1-m2)/ρ水、v物=v溢水=(m1-m2)/ρ水、ρ物=ρ水m物/(m1-m2)

测液体的密度(等体积法)

m液体=m2-m1(m2-m1)、m水=m3-m1、v液=v水=(m3-m1)/ρ水、ρ液=m液/v液=ρ水(m2-m1)/(m3-m1)

(3)仅有量筒

量筒只能测体积。而密度的问题是ρ=m/v,无法直接解决m的问题,间接解决的方法是漂浮法。

v排=v2-v3、v排=v3-v1、g=f浮、ρ物gv物=ρ液gv排

若ρ液已知,可测固体密度、ρ物=ρ液(v2-v1)/(v3-v1);

若ρ物已知,可测液体密度、ρ液=ρ物(v3-v1)/(v2-v1);

条件是:漂浮。

(4)仅有弹簧秤

m物=g/g、f浮=g-f、ρ液gv物=g-f;

若ρ液已知,可测固体密度、ρ物=ρ液g/(g-f);

若ρ物已知,可测液体密度、ρ液=ρ物(g-f)/g;

条件:浸没,即ρ物〉ρ液。

密度测量还有很多其他方法如杠杆法、连通器法、压强法等。

阅读全文

与气液相量用杠杆规则确定相关的资料

热点内容
江阴贵金属交易所 浏览:657
淘客佣金在哪儿 浏览:532
抵押贷款利率银行利率 浏览:722
工商银行卡开了贵金属账户 浏览:771
高杠杆炒股到领航ok放心 浏览:667
6月12人民币兑港币汇率 浏览:245
军医股票 浏览:355
股指期货稳赢方法 浏览:897
肌肉骨骼系统的杠杆 浏览:900
思念水饺股票 浏览:789
腾讯理财通绑定基金 浏览:537
沪教版八年级物理知识点杠杆 浏览:917
支付宝中高收益的理财 浏览:494
保险经纪人佣金税费计算 浏览:168
山东科技融资担保公司 浏览:825
余额理财产品剩余额度不足 浏览:921
edda科技融资 浏览:713
2017年区块链融资额 浏览:926
热门股票股东 浏览:710
股票增持推荐 浏览:251