导航:首页 > 汇率佣金 > 杠杆咬合

杠杆咬合

发布时间:2021-07-04 13:47:02

⑴ 两个齿轮啮合 半径是1:2 那么产生的力矩便是2:1是怎么计算的

两个齿轮啮合,半径是1:2 那么产生的力矩也是1:2

如上图,在齿轮传动过程中,两个齿轮啮合面上传递的是力,按照牛顿第三定律,主动齿轮对从动齿轮啮合面的圆周力Ft1与从动齿轮对主动齿轮啮合面上圆周反作用力Ft2大小相等,方向相反,作用在两个物体上。即Ft1=Ft2

由于力矩等于力乘以力臂,而齿轮的力臂等于其半径,所以主动齿轮传递的力矩T1=Ft1*r1,从动齿轮接受的力矩T2=Ft2*r2,也就是说T1/T2=Ft1*r1/Ft2*r2=r1/r2,就正比于其半径的比,如果两个齿轮半径比是1:2,则产生的力矩就是1:2。

在其它传动中也有这样的情况,比如带传动、链传动等等,传递的力矩都正比于传动轮的半径。

⑵ 古人主要是利用物理学中的什么原理建成金字塔的

利用杠杆原理。

金字塔在埃及和美洲等地均有分布,古埃及的上埃及、中埃及和下埃及,今苏丹和埃及境内。现在的尼罗河下游,散布着约80座金字塔遗迹。 大小不一,其中最高大的是胡夫金字塔,高146.5米,底长230米,共用230万块平均每块2.5吨的石块砌成,占地52000平方公尺。

石块之间没有任何黏着物,靠石块的相互叠压和咬合垒成。国王哈佛拉的金字塔前,还矗立着一座象征国王权力与尊严的狮身人面像。埃及金字塔是古埃及的帝王(法老)陵墓。世界七大奇迹之一。

(2)杠杆咬合扩展阅读:

杠杆可分为省力杠杆、费力杠杆和等臂杠杆,没有任何一种杠杆既省距离又省力,这几类杠杆有如下特征:

省力杠杆,L1>L2,F1<F2,省力、费距离。

如拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。

费力杠杆,L1<L2,F1>F2,费力、省距离。

如钓鱼竿、镊子,筷子,船桨裁缝用的剪刀 理发师用的剪刀等。

等臂杠杆,L1=L2,F1=F2,既不省力也不费力,又不多移动距离。

如天平、定滑轮等。

⑶ 扳手属于杠杆还是轮轴

1.扳手属于杠杆
2.因为杠杆原理讲的是支点与力矩之间的关系,扳手咬合部分是支点,扳手长柄是力矩,符合杠杆原理
2.所以扳手属于杠杆啊

⑷ 旋转木马怎么达到起起落落的效果,要结构原理,包括齿轮啮合,杠杆原理的模型

起起落落只是滚轮在突起和凹陷的地方滚过时产生的效果而已。。。

⑸ 关于物理

资料:最大静摩擦力不小于滑动摩擦力——最大静摩擦力大于或等于滑动摩擦力,这是由“最大静摩擦力”的定义来决定的,因为不满足上述关系的静摩擦力就不是最大静摩擦力。但通常都会有“最大静摩擦力大于滑动摩擦力”的状况,要解释这个经常会发生的现象(但不是一定发生),就与前述的逻辑矛盾及定义无关了。这涉及到摩擦理论,而摩擦理论是一个复杂得至今尚无定论的理论。可以提供两个模型来定性地解释,但显然它们并不是充分的。
1)相比于相互滑动的两个接触面,相互静止的接触面上的分子(或原子)之间有充分的时间彼此靠近(在一定范围内分子靠得近就意味着分子间吸引力较大),并且这样相互间分子力较大的分子的数目也会较多,所以,要克服这许多的、分子力较大的分子之间的吸引力而动起来,外力就要更大些——最大静摩擦力大于滑动摩擦力。
2)把接触的表面想象成有许多的凹凸,两面间的凹凸彼此咬合成为摩擦力的一个来源。相互静止时,彼此充分紧密地咬合;相互滑动时,凹凸已被前侧磨得(或压得)较平——后侧可以相互咬合的凹凸已经变浅变小了,于是滑动摩擦力就会小一些。
推车时,前后轮转动都是因为受到地面给它们施加的摩擦力的作用,即前后轮都有相对地面向前运动的趋势,所以地面对前轮的摩擦力和对后轮的摩擦力都向后。
骑车时,人通过链条给后轮一个力,使后轮转动,假设地面光滑,则后轮会向前加速转动,说明后轮有相对地面向后转动的趋势,所以地面对后轮的摩擦力向前。前轮转动是因为受到力的作用,假设地面光滑,前轮就不会转动,所以地面对前轮的摩擦力向后。

(判断摩擦力方向时,可以假设接触面光滑,这时物体的运动方向就是它的运动趋势方向。)

摩擦力跟三个因素有关:1、正压力2、接触面间的摩擦系数3、两物体间有相对运动趋势
摩擦力与重力之间没有直接的关系,物体在水平面中重力相当于正压力,这时只要接触面不光滑,也就是有动摩擦系数,且物体与水平面之间有相对运动趋势,就可以用公式:摩擦力=摩擦系数*正压力(重力)
然而物体在斜面上摩擦力的计算方法就不同了,此时还跟斜面倾角有关系。在物体放在斜面上且静止状态下一般可以用:摩擦力=重力*Sin(倾角)
如果物体在斜面上滑动,则摩擦力=摩擦系数*重力*Cos(倾角)
匀速拉动物体的拉力不一定为摩擦力,如果拉力跟物体运动方向成一直线,可以说此时拉力的大小等于摩擦力,如果不成一直线就要用拉力在物体运动方向的分量作为摩擦力的大小。
1.摩擦分类

1)静摩擦力:相互接触的物体有相对运动的趋势时,在接触面上产生的阻碍物体相对运动的作用力

2)滑动摩擦力:相互接触的物体作相对运动时,在接触面间产生的阻碍物体相对运动的力

2.摩擦力产生条件:

(1)两个物体直接接触

(2)两接触面间有相互挤压

(3)接触面都粗糙

(4)两物体有相对运动或者相对运动趋势

3.摩擦力的三要素

1)大小,静摩擦力的大小既是可变的,它可随着相对运动趋势,在O到 之间变化,又是有界的,在挤压力一定时,存在着一个最大静摩擦力 不能无限增大。

滑动摩擦力的大小决定于两个因素μ和N,即f=μN,μ反映接触面的材料和粗糙程度,而N反映其挤压程度.

2)方向,摩擦力的方向是沿着接触面,且与相对运动或相对运动的趋势方向相反

3)作用点,摩擦力分布在一个平面上,但其存在一个等效作用点.
定义:一根硬棒,在力的作用下,能绕着固定点转动,这根硬棒就是杠杆。
杠杆平衡条件:动力臂×动力=阻力臂×阻力
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向下杠杆是等力杠杆;第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点在中间,动力臂小于阻,是费力杠杆。
第一种杠杆例如:剪刀、钉锤、拔钉器……杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长剪纸板花剪较省但是费时;而洋裁剪则费力但是省时。

生活中的杠杆
1.剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大。用动力臂较长、阻力臂较短的剪刀。
2.剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,刀口要比较长。用动力臂较短、阻力臂较长的剪刀。
3.剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为了加快修剪速度,剪切整齐,要求剪刀刀口要长。用动力臂较长、阻力臂较短,同时刀口较长的剪刀。
人体内的杠杆

运动系统是许多个杠杆结构组成的,人体的许多动作都是通过杠杆作用而表现出来的。

在运动过程中,骨为运动的杠杆,关节为运动的支点,骨骼肌施加动力。当骨骼肌收缩时,牵动所附的骨围绕关节转动,就会产生各种动作。人体内有三种类型杠杆,即等臂杠杆、省力杠杆和费力杠杆。下图示仰头、跷足、屈肘分别代表的三种杠杆,你能判断出各属哪一种吗?

图中O表示关节构成的支点,三图分别表示寰枕关节、跖趾关节和肘关节。A点为肌肉在骨上的附着点,即力点,B则表示重点,由此可知,仰头为等臂杠杆,跷足为省力杠杆,而屈肘则为费力杠杆。在屈肘动作中,如果OB是OA的8倍,假如你要用手托起8千克的铁球,请你算算看,肱二头肌至少要施加多大的 力?(答:627.2牛顿)

--------------------------------------------------------------------------------

人身上的杠杆

在人体生理卫生课上已经学过,人身上有206块骨,其中有许多起着杠杆作用,当然这些起杠杆作用的骨不可能自动地绕支点转动,必须受到动力的作用,这种动力来自附着在它上面的肌肉.

肌肉靠坚韧的肌健附着在骨上.例如肱二头肌上端肌腱附着在肩胛骨上,下端肌腱附着在桡骨上(如图),肱三头肌上端有肌腱分别附着在肩胛骨和肱骨上,下端附着在尺骨上.

人前臂的动作最容易看清是个杠杆了,它的支点在肘关节.当肱二头肌收缩、肱三头肌松弛时,前臂向上转,引起曲肘动作;而当肱三头肌收缩、肱二头肌松弛时,前臂向下转,引起伸肘动作.从上图很容易看出,前臂是个费力杠杆,但是肽二头肌只要缩短一点就可以使手移动相当大的距离.可见,费了力,但省了距离.

如图是跑动时腿部肌肉示意图,为了画面简单容易看清,右腿没有画出臀大肌、股四头肌,左腿没有画出髂腰肌①、股二头肌.当右腿向前跨步时,是右腿的髂腰肌收缩、臀大肌松弛,使右大腿抬起;股四头肌松弛,股二头肌收缩,使右膝弯曲.这时候,左腿由于它的髂腰肌松弛,臀大肌收缩,股四头肌收缩,股二头肌松弛,而伸直.

--------------------------------------------------------------------------------

杠杆运动

在人体中,骨在肌拉力作用下围绕关节轴转动,它的作用和杠杆相同,称为骨杠杆。人体的骨杠杆运动有三种形式:
1.平衡杠杆:支点在力点和重点之间。如颅进行的仰头和俯首运动。
2.省力杠杆:重点在支点和力点之间。如行走时提起足跟的动作,这种杠杆可以克服较大的体重。
3.速度杠杆:力点在重点和支点之间。如肘关节的活动,这种活动必须以较大的力量才能克服较小的重量,但运动速度和范围很大

⑹ 内咬合齿轮的力臂怎么计算,如图,在齿轮的齿数是20齿,内齿轮的齿数是40齿。

齿轮的受力分析是以齿轮的分度圆来计算的,齿轮的分度圆直径=模数×齿数。分度圆的半径就是啮合时的力臂。

⑺ 口呼吸、牙齿咬合与头前倾、驼背、侧弯、高低肩、身体平衡性差、TMD、面部发育异常的关系

每个人私家驼背的环境不一样,你必要自我阐发一下。


一开始姐妹都有口呼吸,妹妹改正了,姐姐则没有

参登科文网页:姿势决定长相:从口呼吸提及

Starecta要领告成案例#1:

莫雷洛:我要去世了,没有专家能帮帮我!

?症状:慢性痛楚悲伤,背部痛楚悲伤,颈部痛楚悲伤,发急,恐惧去世亡,恐慌发作,胃灼热,消化不良,食品过敏,食品不耐受,恶心,呕吐,心动过速,体温题目,呼吸困难,就寝呼吸停息,慢性委顿失眠,发急,烦闷,胃溃疡

?诊断:脊柱侧弯,颈椎生理曲度增长,腰椎前凸增长,驼背(脊椎弯曲),恐慌发作症,疑病症

?姿势均衡时间:2年6个月(60%的事变已经完成)

孩提时的我由于我的前倾姿势有着无数的康健题目。我的头向前下垂,背部弯,肩膀弯,另有一个非常突出腰椎前凸。

只管有这些题目,我不停练习了很多活动;我喜好踢足球,跑步,游泳,皮划艇,柔道直到24岁,我不得不完全克制。我痛楚的只能留在床上。

我永久忘不了18岁时第一次恐慌发作。从当时到我24岁,我的生存不停螺旋式降落陪伴着种种失禁症状。

我的身材连续塌陷,没有人知道产生了什么事。家人报告我,我是一个担心症患者,我见了很多生理学家和精力病学家。

然后我见了其他专家,如体位骨科医师,推拿师,整骨,都没用。我开始狂热研究怎样理顺我的脊椎。

统统都从牙齿开始,颅骨必要被支持并保持在精确的位置,以便让我的脊椎保持其正常生理曲线。

要规复头骨挺立,我必要杠杆。颌骨是一个支点和整改器。头骨终于可以挺直。尤里卡!

身材变革很累,我没有任何活动(只是坐在椅子上)就拉直了。这是惊人的!

我终于明白,你和我的姿态基于生物机制,关键在你和我的口中,即牙齿从牙弓挤出高度(即咬合)。这统统都取决于你和我的头骨是如安在你和我的下巴上安排。吞咽时孕育产生的对称或不同错误称的力气认真你和我的脸部调和之美,以及整个身材的精确姿势。

这是一件不可思议的;我终于实现了把背部拉直的空想。月复一月,我可以看到在一个完全天然的方法在规复其正常生理曲线。在这个进程中,由于多年代偿而收缩的肌肉,终于能真正蔓延。末了,我实现了我一辈子的空想:一个直背!

Starecta要领告成案例#2:

瓦莱里奥:当我朋侪都在活动玩乐时我的芳华期只能在床上读书

?症状:右肩痛楚悲伤,慢性委顿,通常发热,体温调理的题目,颈部壅闭

?诊断:脊椎侧弯30度

?姿势均衡时间:2年(50%的事变已经完成)

我生掷中最糟糕的一天是当我第一次脊椎痛发时,我16岁。我的父母报告我,这是一个大略的背部痛楚悲伤,我不该该担心。

更多的腰酸背痛来袭。当我18岁,我不得不去见一个骨科大夫,查抄返来后,给了去世刑裁定:“30度脊柱侧弯,不大概办理它。”

到其后才发明我的生存搞砸了,当我在大学时,我全部的朋侪开始去健身房和游泳池训练和塑造他们的形体。

那是你寻求女孩准备约会的年龄。固然每个人私家都在训练他们的身材,我眼睁睁地看着,我把时间用来读书,躲在我的抱负天下。

我28时我的肩膀非常痛。我忍无可忍,我决定整理我的环境,我见了种种专家。每个人私家都报告我,28岁且30度侧弯不克不及变化。

当时的我跌入谷底。我试图在床上事变。我的身材被拉扯,但我内心并不想降服佩服。这时间,我遇到了莫雷诺,你和我一起决定实行新的东西,逾越科学天下的平凡知识。

起首,你和我决定只为本身做这一点,但其后你和我意识到,这可以惠及其他人。无数次失败的实行后,我还记得莫雷诺的直觉:哪个对当代科学的研究盼望极大的大略直觉。

这个让你和我侧夜未眠的直觉便是该去世的杠杆,没有人能看到。便是杠杆能带来身材规复对称。真的可以,它不但是一个理论。

我仍旧明白地记得,当我我的脊椎看到被拉直我的以为。这毫无疑问是我生掷中最精美的一天。你和我如许做拦截了全部的意见,挑衅传统的姿势学和漠视他人的讽刺声。

你和我看到了巨大的潜力,这种要领,你和我决定用你和我的生存致力寻求这个作为革命。从当时起,我的身材不停没有克制过给我惊喜。我已经好几年不再有发热了。

在我如许冒险进步时全部人愣住了看我,问我告成的法门。变直的背部已在无形中在我的身材施加了哥白尼革命:我的身材得到了极大的弹性,我的重心低落了,我的均衡有所改进,我的呼吸加深,我的隔阂事变好得多。

Starecta要领告成案例#3:

西蒙:之前我做了10个手术都没用,一个大略牙套救济了我

?症状:慢性痛楚悲伤、恶心呕吐、腹痛、瘦弱

?诊断:特发性胃轻瘫,慢性假性肠壅闭,肠自身免疫性精神病

?姿势均衡时间:3年6个月(95%的事变已经完成)。他将开始末了的事变

过去只能仰着头,渐渐能直视火线了。改进后还发明血液中gao丸激素和??激素规复正常,缘故起因以为是头骨下颌不均衡会克制到颅底的脑垂体

Starecta要领告成案例#4:

6个月背面骨与下颌骨平行了,可以站直了,气色也变很多多少了,克制如今她已经实践starecta一年多了

李海伦(她是咱们中国人,真名叫黎雪飞,德律风15571093300,在湖北襄阳,我刚接洽到了她,大家乐意相识或实行starecta要领的可以接洽她)分享了本身的变革给牙医,大夫说这不大概从牙齿改正姿势,她这个年龄骨头已经钙化。然后她展示本身之前的污蔑的眼和嘴,大夫惊倒了。她很开心脖子不再连续的痛,如今抖擞了芳华。

Starecta要领告成案例#5:

7个月后

?脑雾消散

?颈部及背部告急性痛楚悲伤90%消散

?目力含糊消散

?慢性委顿消散

?感情和思索本领极大进步

*驼背缘故起因探究

本文比较大杂烩,鉴于知友大概明白有毛病,追加此段。细致仅仅是个人私家明白,如有违科学逻辑请包涵。

生命进化是适应环境的,你的身材也在适应你的生存风俗、不测的受伤等等。年龄越小,这种适应性(可塑性)越强。要是你成年之前都是适应当古人体最正常(最稳固版本)活动模式,那你成年后就很难生长出口呼吸、驼背等种种并发症。纵然你上班久坐伸脖子,你顶多是头前倾、颈椎酸痛、颈椎病。

但要是你生长发育高峰局势部适应了(长期的)不良举措,它会生长出一种团体模式,是你整个身材都在适应的不良模式,它会固化到你的大脑影象、潜意识、构造布局中,那你随后再想规复到稳固模式就要耗费很多精力,你得了解到全部题目,身材哪些地方受到影响,每个地方都要同时规复,要打开潜意识,主动提示本身,重修稳固模式(关于不稳固版本,比如你身材适应了头前倾,却来不及更好的改革身材以适应头前倾引起的种种不良,你的身材结构成果丧失20%,生存质量大大降落),你得做很多的事变,想象一动手术后病人的后期病愈便是一种重修rehabilitation。年龄越大这种重修就越困难,分外是成年后不大概完全逆反,只能做有限的改进。你和我常说的布局性驼背不克不及自我改正,紧张者生存困难只能手术强行扳直便是这种环境。

我上面所说的“你得了解到全部题目”,便是本文的出发点,险些全部人都不会完全意识到驼背不但仅是胸椎后凸增长了,你的牙齿、下颌骨生长很大概变异了(要知道对付高出肯定程度的驼背,身材布局中最不好调解的便是牙齿高度/咬合、颞颌关键关键、胸椎这些活动度非常大而又不是整块骨骼布局,其他部分如头骨、骨盆都有本身强大的布局生长内稳固束缚,布局受四周影响小,顶多是位置不正。而牙齿生永劫受太过挤压,没长到正常高度或是下沉了,牙齿克制长高后它就不上来了。胸椎在驼背后,构成胸腔的12条肋骨变得更圆,肋骨会强力束缚胸椎的舒展。末了更别说软构造了,结缔韧带筋膜肌肉……神经血管。以是说要举行团体的改进,有点雷同俗话说病来如山倒,病去如抽丝,你肾脏发炎了就顿时不可了,肾脏认真过滤血液,它事变不好会累及满身各个器官产抱病变,等你修睦了肾脏,其他器官也病的不轻,得一个个都要修睦),你的身材布局已经到达新的一种不良均衡,你只针对局部改正,短时间你以为蔓延很多,渐渐它又会规复不良的。

再说口呼吸,婴儿时期不精确的哺乳姿势、睡觉姿势会导致口呼吸。口呼吸会导致头前倾,由于必要更富裕的氛围呼吸路径(google到的资料以为的),你也可以明白为不停在口呼吸,咬合失去仇家部的支点作用,头部就会渐渐往前坠落,你颈部肌肉继而更强的向后牵拉你的下颌骨,你的上下牙周前后错位了,牙齿生长高度束缚环境变异了,面部生长变异就变得丢脸了(着实那是适应身材需求的,丢脸便是偏离正常脸部中间值太远了,凡人对你的面部辨认会出现不同,他很难熬难过会排挤),云云相辅相成的。这里逻辑我也看得晕。

但口呼吸的你大概不肯定驼背,要是你平常不怎么长期低头,你大概只是有点头前倾。不过读者的你既然存眷到这篇问答,大多应该还是驼背的。意思便是口呼吸会加重你的驼背。

再说驼背,要是你每天低头含胸(读书、打游戏、女生胸部发育害臊),你还在生长,你颈部肌肉继而更强的向后牵拉你的下颌骨,你的上下牙周前后错位了,咬合不好了,但是你没有口呼吸。

本文殽杂了驼背、咬合、口呼吸,对付大家讨论的歪着头睡觉,歪头写字曲折肩,老爱用一边牙齿咬东西,另有不测受伤,术后黑白腿,都有大概是不同错误称‘不均衡的因由,着实谁是因谁是果,有点雷同鸡和蛋题目。请读者自解。

生理层次

答主在2016.3.6与黎雪飞大姐谈天后天然轻松的就进入了生理层次的交换,在此之前,我不以为本身生理层次有什么题目,就像之前见过的精力科大夫将我完全否定一样,但这次天然的交换很不测的连续了2小时,由于要求用饭才克制了,要是有兴趣可以加群去看看你和我的谈天记录(QQ群文件),仅作分享,不要本身传播,谢谢。

QQ群,驼背吧咬合与均衡437743635

末了声明

答主还没有开始实践这个要领

⑻ 齿轮是一种变形的轮轴.如图12.2-24所示是两个互相咬合的齿轮,他

作用到小轮上,因为齿轮咬合所以两齿轮的外围线速度是一样的但轴的角速度是齿数比的反比,能量守恒小轮做的功转移到大轮后角速度变慢了扭矩变大了。现在三轮车用的差速电机就是这个道理,用小轮带大轮得到大扭矩

⑼ 机械运动中的杆杠原理具体怎么解释

简单机械
凡能够改变力的大小和方向的装置,统称“机械”。利用机械既可减轻体力劳动,又能提高工作效率。机械的种类繁多,而且比较复杂。根据伽利略的提示,人们曾尝试将一切机械都分解为几种简单机械,实际上这是很困难的,通常是把以下几种机械作为基础来研究。例如,杠杆、滑轮、轮轴、齿轮、斜面、螺旋、劈等。前四种简单机械是杠杆的变形,所以称为“杠杆类简单机械”。后三种是斜面的变形,故称为“斜面类简单机械”。不论使用哪一类简单机械都必须遵循机械的一般规律——功的原理。
杠杆
用刚性材料制成的形状是直的或弯曲的杆,在外力作用下能绕固定点或一定的轴线转动的一种简单机械。其上有支点(用O表示),动力(F)作用点,阻力(W)作用点,杠杆的固定转轴就是通常所说的“支点”,从转轴到动力作用线的垂直距离叫“动力臂”,从转轴到阻力作用线的垂直距离叫“阻力臂”。上述就是通常所讲的三点两臂。由于杠杆上三点的位置不同,即产生不同的受力效果。
杠杆原理
亦称“杠杆平衡条件[1]”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为 F1· L1=F2·L2 简单机械
式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
动力
任何机械,不论是简单的还是复杂的,在工作时,总要受到两种力的作用:一种是推动机械的力叫作“动力”动力是使杠杆转动的力。另一种是阻碍机械运动的力叫作“阻力”阻力是阻碍杠杆转动的力。动力可以是人力,也可以是畜力、风力、电力、水力、蒸汽压力等,阻力除了我们要克服的有用阻力之外,还有一些是不可避免的无用阻力。
作用线
通过力的作用点沿力的方向所引的直线,叫作“力的作用线”。
动力臂
从支点到力的作用线的垂直距离叫“力臂”。从支点到动力的作用线的垂直距离L1叫作“动力臂”;从支点到阻力的作用线的垂直距离L2叫作“阻力臂”。如果把从动力点到支点的棒长距离作为动力臂,或把从阻力点到支点的棒长距离作为阻力臂,这种认识是错误的。这是因为对动力臂和阻力臂的概念认识不清所致。
阻力臂
见动力臂条。
转动轴
转动是常见的一种运动。当物体转动时,它的各点都做圆周运动,这些圆周的中心在同一直线上,这条直线叫做“转动轴”。门、窗、砂轮、电动机的转子等都有固定转轴,只能发生转动,而不能平动。几个力作用在物体上,它们对物体的转动作用决定于它们的力矩的代数和。若力矩的代数和等于零,物体将用原来的角速度做匀速转动或保持静止。
三类杠杆
对杠杆的分类一般是两种方法。第一种是以支点、阻力点和动力点所处的位置来分的;另一种是按省力或费力来区分的。无论怎样来划分,总离不开省力、费力、不省力也不费力这几种情况。 简单机械
机械利益
表示机械省力程度的物理量。机械虽然绝对不能省功,但可以省力。使机械作功的力称为“动力”(F),阻碍机械作功的力称为“阻力”(P)。使用机械的目的,在于使用很小的动力而与阻力平衡。所谓机械利益(A),就是机械的有用阻力(P)跟动力(F) 小于1。 机械利益>1时,省力费时,凡省力的机械,其机械利益必大于1。例如,独轮车、钳子、起子、省力的杠杆等都是省力的机械。机械利益=1时,不省力,也不费力。例如物理天乎。机械利益<1时,费力省时,例如竹夹、火钳等。机械利益是由实际测得的有用阻力和动力的大小所决定。由于机械润滑情况的不同,在克服同样的有用阻力时,亦有所不同。机械润滑得不好,无用阻力大,需要动力也大,机械利益就小些;机械润滑得好,无用阻力小,需要的动力也小,机械利益就大些。新生产出的机器需要磨合,汽车出厂要用上一段时间,目的是使其摩擦阻力减小。但机器陈旧,机件磨损,又会增加阻力。
杠杆的应用
不同类型杠杆各具有不同的特点和用途。掌握了杠杆原理,就可根据需要有意识地选用不同类型的杠杆来使用。应明确:省力杠杆省力但要多移动距离,费力杠杆费力但省距离,等臂杠杆不省力也不省距离,又省力又省距离的杠杆是没有的。有的杠杆是否省力或省距离,不是永恒不变的。根据使用情况的不同,会由省力变为省距离。例如,用铁锹铲土,往车上装土的过程都会有所改变。铲土时支点在动力点及阻力点之间,在装土时动力点在支点与阻力点之间。为此,在使用杠杆时应注意几点: 1.解答杠杆问题时,必须根据题意画出示意图,在图上标出杠杆的支点、动力作用线和阻力作用线。同时用线段标明动力臂和阻力臂的大小,再根据杠杆平衡条件,列出方程,进行计算。 2.力臂是一个重要的概念。力臂是从支点到力的作用线的垂直距离,不要理解为力臂是从支点到力的作用点的长度。动力和阻力都是指作用在同一杠杆上的力,而不是作用在重物或其他物体上的力。 3.画杠杆示意图的方法: (1)画出杠杆:用粗直线表示直杠杆,用变曲的粗线表示曲杠杆。 (2)在杠杆转动时找出支点,并在支点旁用箭头表示杠杆转动的方向。 (3)根据转动方向判断动力、阻力的方向。动力、阻力的作用点应画在杠杆上,可用力的示意图表示。 (4)用虚线表示力的作用线的延长线和力臂。 4.杠杆的平衡条件,适用于任意一个平衡位置上,所谓杠杆的平衡是指杠杆静止不转动或匀速转动。
杆秤
它是测量物体质量的量度工具,是以提纽为转动轴,根据杠杆平衡原理制造的。杆秤主要由秤杆、秤砣、秤钩(或秤盘)等构成。如图1-23所示。G表示杆秤的重力,B点是它的重点,未挂重物时若将 A点即为杆秤的“定盘星”。在秤钩上加物W后,将秤砣从A点移到A' 力G相对应的刻度A'的位置。杆秤是我国劳动人民所发明并使用已久的测量工具,旧秤以斤,两为单位计量,目前以千克计量。
力矩
又叫“转矩”,是表示力对物体作用时,使物体发生转动或改变转动状态的物理量。力矩是矢量。力矩的大小等于力与从转轴到力的作用线的垂直距离之乘积。如果物体所受的力不在垂直于转轴O的平面内,就必须把力分解成两个分力:一个分力与转轴平行;另一个分力是在转动的平面内。只有转动平面内的分力才可能改变物体的转动状态。因此,在力矩等于力跟力臂乘积的计算中,应理解力是在它的作用点的转动平面内的分力。如这一点在力的作用线上,则力矩为零。如果若干个力同时作用在一个物体上,则合力矩是所有分力矩的代数和。一个处于平衡的物体,顺时针方向力矩的和等于逆时针方向力矩的和,在国际单位制中,力矩的单位是米·牛顿。其方向用右手螺旋法则决定。在中学阶段,因为只研究有固定转轴的物体的平衡,力矩就只有两种转向。规定物体逆时针转动的力矩为正,使物体顺时针转动的力矩为负。力矩愈大,使物体转动状态发生改变的效果就愈明显。用大小相同的力推门时,力的作用点离转轴愈远,且方向垂直于门,力臂愈大,则推门愈省力。
力偶
大小相等、方向相反,但作用线不在同一直线上的两个力叫作“力偶”。用双手攻螺纹或用手旋钥匙、水龙头时,所施加的作用常是力偶。它能使物体发生转动,或改变其转动状态。汽车驾驶员双手转动转向盘时所施加的一对力就是一个力偶。力偶的转动效果决定于力偶矩的大小。力偶矩等于其中任何一个力的大小和两力作用线之间的垂直距离(力偶臂)的乘积。如图1-24所示。如果作用力F的方向跟AB垂直,AB的长度等于d,那么这个力偶的力偶矩(M)为: M=±Fd。 式中Fd为力偶矩的大小,符号用来表示力偶的转向。规定力偶逆时针转向取“+”,反之取“-”(也可规定,力偶顺时针转向取“+”,那么力偶逆时针转向就取“-”)。应注意:力偶中力的方向不跟AB垂直时,应像力矩那样分解成垂直分量,再进行计算。力偶的转矩(即力偶矩)和所绕着转动的点无关。由于力偶的合力为零,它不能使物体产生位移,只能使物体发生转动或改变物体的转动状态。
力偶矩
简称为“力偶的力矩”,亦称“力偶的转矩”。力偶是两个相等的平行力,它们的合力矩等于平行力中的一个力与平行力之间距离(称力偶臂)的乘积,称作“力偶矩”,力偶矩与转动轴的位置无关。力偶矩是矢量,其方向和组成力偶的两个力的方向间的关系,遵从右手螺旋法则。对于有固定轴的物体,在力偶的作用下,物体将绕固定轴转动;没有固定轴的物体,在力偶的作用下物体将绕通过质心的轴转动。
力偶臂
力偶之两个力之间的垂直距离。见力偶条图1-24所示。
轮轴
是固定在同一根轴上的两个半径不同的轮子构成的杠杆类简单机械。半径较大者是轮,半径较小的是轴。从形式上看是圆盘,但从实质上看起来只有它们的直径或半径起力学作用。用R表示轮半径,也就是动力臂;r表示轴半径,也就是阻力臂;O表示支点。当轮轴在作匀速转动时,动力×轮半径=阻力×轴半径,所以轮和轴的半径相差越大则越省力。上式动力用F表示,阻力用W表示,则可写成FR=Wr。 即利用轮轴可以省力。若将重物挂在轮上则变成费力的轮轴,但它可省距离。轮轴的原理也可用机械功的原理来分析。轮轴每转一周,动力功等于F×2πR,阻力功等于W×2πr。在不计无用阻力时,机械的 日常生活中常见的辘轳、绞盘、石磨、汽车的驾驶盘、手摇卷扬机等都是轮轴类机械。
滑轮
滑轮是属于杠杆变形的一种简单机械,是可以绕中心轴转动的,周围有槽的轮子。使用时,根据需要选择。滑轮可分为定滑轮、动滑轮、滑轮组、差动滑轮等。有的省力,有的可以改变作用力的方向,但是都不能省功。
定滑轮
滑轮的轴固定不动,它实质上是一个等臂杠杆。动力臂和阻力臂都是滑轮的半径r,根据杠杆原理Fr1=Wr2。它的机械利益为 变了动力的方向,如要把物体提到高处,本应用向上的力,如利用定滑轮,就可以改用向下的力,因而便于工作。
动滑轮
滑轮的轴和重物一起移动的滑轮。它实质上是一个动力臂二倍于阻力臂的杠杆。根据杠杆平衡的原理Wr=F·2r,它的机械利 改变用力的方向。其方向是与物体移动的方向一致。
滑轮组
动滑轮和定滑轮组合在一起叫“滑轮组”。因为动滑轮能够省力,定滑轮能改变力的方向,若将几个动滑轮和定滑轮搭配合并而成滑轮组,既可以改变力的大小,又能改变力的方向。普通的滑轮组是由数目相等的定滑轮和动滑轮组成的。而这些滑轮或者是上下相间地坐落在同一个轮架(或叫“轮辕”),或者是左右相邻地装在同一根轴心上。绳子的一端固定在上轮架上,即相当于系在一个固定的吊挂设备上,然后依次将绳子绕过每一个下面的动滑轮和上面的定滑轮。在绳子不受拘束的一端以F力拉之,被拉重物挂在活动的轮架上。对所有各段绳子可视为是互相平行的,当拉力与重物平衡时,则重物W必平均由每段绳子所承担。若有n个定滑轮和n个动滑轮时, 且为匀速运动时,则所需之F力的大小仍和上面一样。因此,在提升重物时才能省力。其传动比乃为F∶W=1∶2n。注意,在使用滑轮组时,不能省功,只能省力,但省力是以多耗距离(即行程)为前题的。 前边所分析的定滑轮、动滑轮以及滑轮组,都是在不计滑轮重力,滑轮与轴之间的摩擦阻力的情况下得出的结论。但在使用时,实际存在轮重和摩擦阻力,所以实际用的力要大些。
差动滑轮
即链式升降机,是一种用于起重的滑轮组。上面是由两个直径不同装在同一个轴上的圆盘A、B组成的定滑轮。下面是一个动滑轮,用铁索与上面的定滑轮联结起来而成滑轮组。若大轮A的半径是R,小轮B的半径是r,如图1-25所示。当动力F拉链条使大轮转一周,动力F拉链条向下移动了2πR,大轮卷起链条2πR,此时小轮也转动一周,并放下链条长2πr于是动滑轮和重物W上升的高度为 由于2R大于(R-r),差动滑轮的机械利益大于1,若提高机械利益,可加大两轮的半径同时缩小两轮间的半径差。这种机械,亦称“葫芦”,有手动,也有用电来驱动的。链条是闭合的,为防止滑轮和链条间的滑动,滑轮上有齿牙与链条配合运动。
斜面
简单机械的一种,可用于克服垂直提升重物之困难。距离比和力比都取决于 简单机械
倾角。如摩擦力很小,则可达到很高的效率。用F表示力,L表示斜面长,h表示斜面高,物重为G。不计无用阻力时,根据功的原理。得 FL=Gh。实验证明,沿着光滑斜面向上拉重物数学要的拉力F小于重物的所受的重力G,即利用斜面可以省力,当斜面高度一定时,长度L不同的斜面所需的拉力也不同:L越长,F越小,越省力 倾角越小,斜面越长则越省力,但费距离。
螺旋
属于斜面一类的简单机械。例如螺旋千斤顶可将重物顶起,它是省力的机械。千斤顶是由一个阳螺旋杆在阴螺旋管里转动上升而将重物顶起。根据功的原理,在动力F作用下将螺杆旋转一周,F对螺旋做的功为F2πL。螺旋转一周,重物被举高一个螺距(即两螺纹间竖直距离),螺旋对重物做的功是Gh。依据功的原理得 很小的力,就能将重物举起。螺旋因摩擦力的缘故,效率很低。即使如此,其力比G/F仍很高,距离比由2πL/h确定。螺旋的用途一般可分紧固、传力及传动三类。
齿轮和齿轮组
两个相互咬合的齿轮,在它们处于平衡状态时,不省力,因为齿轮的实质是两个等臂杠杆,所以咬合的齿轮不省力,只省圈数。

亦称“尖劈”,俗称“楔子”。它是简单机械之一,其截面是一个三角形(等腰三角形或直角三角形)。三角形的底称作劈背,其他两边叫劈刃。施力F于劈背,则作用于被劈物体上的力由劈刃分解为两部分,如图1-26所示。P是加在劈上的阻力,如果忽略劈和物体之间的摩擦力,利用力的分解法,知P与劈的斜面垂直,P的作用可分成两个分力:一个是与劈的运动方向垂直,它的大小等于P·cosα,对运动并无影响;另一个是与劈的运动方向相反的,它的大小等于P·sinα,对运动起阻碍作用。所以,当F=2P·sinα时劈才能前进,因而P与F大小之比等于劈面的长度和劈背的厚度之比,因此劈背愈薄,劈面愈长,就愈省力。劈的用途很多,可用来做切削工具,如刀、斧、刨、凿、铲等;可用它紧固物体,如鞋楦榫头,斧柄等加楔子使之涨紧;还可用来起重,如修房时换柱起梁等。

是描述物体状态改变过程的物理量,能量变化的量度。功的概念来源于日常生活中的“工作”一词。在物理学中,它有特殊的含义。当物体在恒力F的作用下,力的作用点的位移是S时,这个功就等于力跟距离的乘积。对初中学生来说,只要明确“在力的作用下,物体沿力的方向通过了一段距离,那么这个力就对物体做了功”,这是指物体在恒力作用下,沿力的方向作单向直线运动的情况,所以对功的计算可用公式W=FS。当物体在恒力作用下,作非单向直线运动,如竖直上抛运动、平抛运动、斜抛运动等等,物体受力方向和运动方向不一定是一致时,对功的理解应加深为“力对物体所做的功,等于力的大小、力的作用点的位移大小,力和位移间夹角的余弦三者之乘积”即W=FScosα。式中W表示外力F对物体所做的功,S表示物体移动的路程,α表示F与S之间的夹角。根据公式研究力对物体做功的一些情况: 1.当α=0°时,W=FS,力对物体做正功; 2.当0°<α<90°时,1>cosα>0,则力F的有效分力Fcosα和物体的运动方向一致,力F对物体做正功; 3.当α=90°时,cosα=0,则W=0,此时力F对物体不做功; 4.当180°>α>90°时,-1<cosα<0,则W<0,即W为负值。在这种情况下F对物体做负功,也可说成物体克服阻力F做功; 5.当α=180°时,则W=-FS,这时力F对物体做负功,或者说成物体克服阻力F做功。 必须注意:在研究有关“功”的问题时,应分清有没有做功,谁在做功。功是一个只有大小而没有方向的物理量,它是标量而不是矢量。至于正功和负功,不过是区别外力对物体做功还是物体克服阻力做功,或用来表示力与路程同向还是反向,并不是功有方向性。 功是力对空间的累积效应。力对物体做功,使物体发生位置或运动状态的改变,因而也就发生了机械能的改变。功即是反映在这一过程中,物体机械能改变多少的物理量。在力学中功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。功的单位和能量单位一样,在国际单位制中,都是焦耳。 计算变力做功是把运动的轨迹分成许许多多无限小的小段,在每个小段内,可以把力看作为恒力,按恒力做功的定义来计算在各个小段内所做的功,最后把各个小段的功加起来,就是变力做的功,即A=ΣFi·ΔSi,如果力和位移都是连续的,则可用积分法计算,
功的原理
亦称“机械功的原理”。即动力对机械所做的功等于机械克服阻力所做的功。也就是说利用任何机械都不能省功。动力功W动,又称输入功或总功。阻力功W阻,包括克服有用阻力所做的W有用(又称输出功)和克服无用阻力所做的W无用(又称损失功),即W动=W阻=W有用+W无用。也可写成W输入=W输出+W损失。功的原理是机械的基本原理。要省力就要多移动距离,要少移动距离就要多用力,使用任何机械都不能省功。在机械做功过程中,只有在不存在无用阻力,机械本身作匀速运动的理想情况下,有用功才等于总功,效率为100%。事实上,必然存在无用阻力,效率一定小于100%,也就是说使用任何机械,在实际情况下总是费功的。应明确,只有在理想情况下,有用功才等于总功。
正功
作用力的方向和力的作用点的位移方向之夹角小于90°且大于或等于0°时(即α为锐角),根据公式作用力A做正功。当力F与位移S夹角α=0°时,W=FScos0°=FS,F做最大正功;0°<α<
负功
当作用力方向与力的作用点位移方向夹角大于90°且小于或等于180°时,这时cosα<0,根据公式功为负。力对物体作负功-A就代表受力作用的物体克服阻力作了正功A。这两种说法描述的是同一物理过程。例如,空气压缩机中空气对活塞作负功,也可以说成是活塞克服空气的压力作正功。又如,汽车紧急制动,车轮停止转动,轮胎在地面上滑动,这时摩擦力对汽车作负功,反过来也可以说汽车克服摩擦力作正功。
功率
功跟完成这些功所用时间的比值叫做“功率”。最初定义功率为“单位时间里完成的功”,它是指做功快慢不变的情况,初中学生易于掌握。“功跟完成这些功所用时间的比值”这一定义功率,对于做功快慢不变的情况,既表示平均功率,又表示即时功率。对于做功快慢不均匀的情况,如时间取得长些,则为平均功率;时间趋于零,这一 率,只能表示机器在一段时间t内的平均功率。而由公式P=Fv计算出来的功率就有了不同的含义。若速度v代表平均速度,那么P代表平均功率,如果v代表即时速度,那么P就代表机器在某瞬时的即时功率。 公式中力是一个矢量,速度也是一个矢量,而功率却是一个标量。 方法,一为“标积”;一为“矢积”。两矢量的“标积”为一标量,其大小(к)为两矢量的大小和两矢量夹角的余弦的乘积,用公式表示为 式P=Fv中,实际上P应为 矢量和 矢量的标积,即 所以得到的功率P应为一标量。 关于公式P=Fv,中F与v成反比的关系,应明确,不能脱离具体条件,防止得出谬误的结果。因为机器的牵引力要受速度的限制,又受机器的构造、运转条件等限制,任何机器在设计制造时,已规定了它的正常功率和最大作用力。超过最大作用力范围,牵引力和速度成反比这一关系就不能适用。另一方面也不能使机器的牵引力趋近于零,而使机器的速度无限制地增加。因为任何机器在工作时要受到阻力作用,阻力还与机器运转的速度有关。即使在没有负载的情况下,机件间的摩擦阻力仍然存在。为维持机器的运转,发动机的牵引力不能小于它所受的阻力。因而它的速度也不能无限增加。因此,任何机械在有一定的最大输出功率的同时,还具有一定的最大速度和最大作用力。 功率的常用单位是瓦特(焦耳/秒),简称瓦,单位符号W。瓦特这个单位较小,技术上常用千瓦做功率的单位。过去还有尔格/秒、牛顿·米/秒、千克力·米/秒。 间t内的平均功率。当物体受恒力作用时也可表示为P=F 。式中 表示某段时间的平均速度。平均功率随所取的时间不同而不同,因此在谈到平均功率时,一定要指出是哪一段时间内的平均功率。参阅功率条。
即时功率
即“瞬时功率”,简称功率。描述机械在某一瞬间作 物体运动即时速度的乘积。作平均速度时,P当然代表平均功率,如果作即时速度,那么P就代表机械在某瞬时的即时功率。当作匀速运动时,即时功率和平均功率相同 杠杆概念:当动力点离支点的距离小于阻力点离支点的距离时,省力。 当动力点离支点的距离大于阻力点离支点的距离时,费力。 当动力点离支点的距离等于阻力点离支点的距离时,不省力也不费力。
编辑本段分类法
第一种分类法
第一类杠杆:是动力F和有用阻力W分别在支点的两边。这类杠杆 不省力也不费力。例如,剪金属片用的剪刀,刀口很短,它的机械利益远大于1 。这是因为金属板很硬,刀口短,刀把长,即动力臂大于阻力臂,可以少用力。属于这种情况的杠杆还有克丝钳等。家庭裁衣剪布用的剪刀,把与刃基本是等长的,即动力臂等于阻力臂,属于不省力也不费力的类型。因为布的厚度较薄,不需太大的力,剪布要直故刀口要长些,为此用力不大,布剪的也直。属于这种类型的还有物理天平。又如理发用的剪刀,刀口很长,即动力臂小于阻力臂,它的机械利益小于1。这是因为剪发本来不需要多大的力,刀口长一些,能够剪得快一些和齐一些。 第二类杠杆:是支点和动力点分别在有用阻力点的两边。这类杠杆的动力臂大于阻力臂,其机械利益总是大于1,所以总是省力的。例如,用铡刀铡草、独轮车等都是这类杠杆。 第三类杠杆:是支点和有用阻力点分别在动力点的两边,这类杠杆的动力臂小于阻力臂,其机械利益总是小于1,所以总是费力的。例如,缝纫机的脚踏板、夹食品的竹夹子都属于这类杠杆。
第二种分类法
第一类杠杆:是省力的杠杆,即动力臂大于阻力臂。例如,羊角锤、木工钳、独轮车、汽水板子、铡刀等等。 第二类杠杆:是费力的杠杆,即动力臂小于阻力臂。如镊子、钓鱼杆、理发用的剪刀。 第三类杠杆:不省力也不费力的杠杆,即动力臂等于阻力臂。其机械利益等于1。如夭平、定滑轮等。

⑽ 牙齿是杠杆吗他是怎么咬东西的

牙齿是杠杆!
东西是阻力,
肌肉产生动力
下颌骨有一个支点

阅读全文

与杠杆咬合相关的资料

热点内容
天津贵金属交易所深圳 浏览:607
镁铝合金加工上市公司 浏览:279
美元兑人民币10月10日汇率 浏览:325
郑煤期货交易时间 浏览:77
人民币币港币汇率今日价格 浏览:404
1986汇率 浏览:284
江西融资性的金融担保公司赚钱不 浏览:887
有价证券理财产品 浏览:228
凯城公司理财讲的怎样 浏览:254
11月兴业银行理财产品一览表 浏览:23
晶丰明源股东信息 浏览:673
金融服务许可 浏览:878
美圈控股集团董事长 浏览:460
创始股份截止 浏览:162
外汇论文 浏览:412
车贷金融公司显示风控 浏览:434
珠海银隆股东 浏览:179
比亚迪金融有限公司怎么样啊 浏览:8
2016年7月港元汇率 浏览:184
小米贷款人工认证不过 浏览:436