A. 30℃时60g水和40g酚混合,此时系统分为两层,酚层含酚70%,水层含水92%,计算两层质量各为多少。
设水层、酚层质量为x,y,酚的实际含量为0.4,水为0.6
从酚系数出发
x/100=(0.7-0.4)/(0.7-0.08)
x=48.4g
y/100=(0.4-0.08)/(0.7-0.08)
y=51.6g
或者从水出发
x/100=(0.3-0.6)/(0.3-0.92)
y/100=(0.6-0.92)/(0.3-0.92)
B. 1000公斤含氯化钾15%的溶液,在95℃蒸发掉900公斤的水,计算
水蒸发,氯化钾还留在溶液中,所以KCl质量在蒸发前后不变。假设原溶液质量为x克,则KCl质量为15%x(1),蒸发掉100克水,溶液质量变为(x-100)克,浓度增大一倍变为30%,所以KCl质量为(x-100)*30%(2),因为蒸发前后KCl质量不变,所以15%x=(x-100)*30%,得出x=200克,从而求得KCl质量为200*15%=30克。
C. 杠杆规则的杠杆规则-应用
杠杆规则在相平衡中是用来计算系统分成平衡两相(或两部分)时,两相(或两部分)的相对量,如图1所示,设在温度为T下,系统中共存的两相分别为α相与β相。
图中M,α,β分别表示系统点与两相的相点;xBa,xBM,xBβ分别代表整个系统,α相和β相的组成(以B的摩尔分数表示);,与则分别为系统点,α相和β相的物质的量。由质量衡算可得。
杠杆规则的推导和法用均以不生成化合物的相图为对象。对于生成化合物的相图,应用杠杆规则时,需要特别加以注意,否则容易错误。
D. 物化杠杆规则
你好!
物化杠杠规则是学生常对物理化学杠杠规则的简称。
杠杠规则:由物料衡算得出的系统中各部分物质的数量之间的关系。设系统中某组分的分子分数为,如将系统分为分子分数各为x1、x2的两部分,则它们的摩尔数n1与n2间,必定遵守下列关系:n1/n2=(x2-x)/(x-x1),此关系犹如以x为支点,以x2-x与x-x1为臂长的杠杆的计算公式,故名。如用重量分数,则得重量比。
如有疑问,请追问。
E. 如何计算热膨胀力
就碳钢瞬时线性热膨胀系数计算模型的建立为例:
当材料的温度由Tref(基准的参考温度)变化到T时,材料长度L的相对变化为:
(1)
根据密度ρ与L3成反比,可推导出εth与ρ间存在以下关系:
(2)
则瞬时线性热膨胀系数定义为:
(3)
由此可见,欲求出瞬时线性热膨胀系数,关键在于确定碳钢在不同温度下的密度值。
以〔C〕≤0.8 %的碳钢为研究对象,根据其冷却时凝固组织的特点(见图1),按照碳含量分为以下4组:
Ⅰ.〔C〕<0.09 %:
L→L+δ→δ→δ+γ→γ→α+γ→α+Fe3C
Ⅱ.〔C〕=0.09 %~0.16 %:
L→L+δ→δ+γ→γ→α+γ→α+Fe3C
Ⅲ.〔C〕=0.16 %~0.51 %:
L→L+δ→L+γ→γ→α+γ→α+Fe3C
Ⅳ.〔C〕=0.51 %~0.80 %:
L→L+γ→γ→α+γ→α+Fe3C
碳钢凝固组织为多相混合体系,其密度按照式(4)和式(5)确定,即:
(4)
f1+f2+…+fi=1 (5)
其中,fi为体系中组分i的质量分数,可利用相图,根据杠杆规则由程序计算确定。组分i(i为L、δ、γ、α或Fe3C)的密度为温度和碳含量的函数:ρ〔T,(i)〕=ρi(T,C),其值取自文献〔6〕。
计算线性热膨胀系数时,选固相线温度为基准参考温度。热膨胀系数由固相线处的数值线性地降低到零强度温度(即固相分率fs=0.8对应的温度)处的零值,在零强度温度以上范围,热膨胀系数保持为零。这样,就可以避免液相区产生热应力。
图1 铁碳相图
Fig.1 Fe-C phase diagram
1.2 铸坯热—弹—塑性应力模型简介
利用有限元法,先计算铸坯温度场,然后将计算结果以热载荷的形式引入应力场。
1.2.1 铸坯温度场的计算
忽略拉坯方向传热,并根据对称性,取铸坯1/4断面薄片,其四边形4节点等参单元网格如图2所示。非稳态二维传热控制方程为:
图2 计算域及铸坯单元网格示意图
Fig.2 Simulation domain and FEM meshused for analysis
(6)
初始温度为浇铸温度,铸坯表面散热热流采用现场实测值:q=2 688-420 t1/2 kW/m2,中心对称线处为绝热边界。模型中采用的热物理性能参数均随温度而变化,并且利用等效比热容c来考虑潜热的影响。另外,液相区对流效果通过适当放大液相区导热系数来实现。
1.2.2 铸坯应力场的计算
为利用温度场计算结果,采用与温度场一致的铸坯网格划分方法。体系中结晶器铜板为刚性接触边界,通过控制其运动轨迹(包括运动方向和速度)来表征结晶器锥度。若铸坯表面某个节点与铜板间距离小于规定的接触判据,则认为在此处发生接触,对该节点施加接触约束(避免节点穿越铜板表面),否则按自由边界处理。
计算时将液、固区域作为一个整体,对高于液相线温度的材料的力学参数作特殊处理,使液相区应力状态保持均匀的静压力状态,且施加在外部的钢水静压力可基本保持原值地传递到固态坯壳内侧。根据对称性,应在中心对称线上施加垂直方向的固定位移约束,但由于只关心坯壳的位移场,且坯壳厚度一般不会超过15 mm,所以只在距表面15 mm的范围内施加约束。超出15 mm的范围基本上为液相区,在其外边缘(对称线处)施加钢水静压力(压力值正比于离弯月面的距离)。
上述体系的力平衡方程为:
(7)
式中,〔K〕为系统的总刚矩阵;{δi}为节点位移列阵;{Rexter}为系统外力(钢水静压力和结晶器铜壁的接触反力)引起的等效节点载荷列阵;{Rε0}为热应变引起的等效节点载荷列阵。考虑包晶相变的影响,在计算{Rε0}时采用前面计算出的碳钢线性热膨胀系数曲线。
计算采用热—弹—塑性模型,假定铸坯断面处于广义平面应变状态,服从Mises屈服准则和等向强化规律,其硬化曲线为分段线性〔7〕。
2 计算结果及讨论
以碳含量为0.045 %、0.100 %和0.200 %的3种碳钢作为计算对象,采用相同的计算条件,即:铸坯断面尺寸为:150 mm×150 mm, 拉 坯 速 度1.5 m/min,浇铸温度1 550 ℃,结晶器长700 mm、锥度0.8 %,弯月面距结晶器上口距离100 mm。
2.1 3种碳钢的瞬时热膨胀系数
图3为计算出的碳钢的瞬时线性热膨胀系数曲线。可以看出:当〔C〕=0.045 %时,热膨胀系数在固相线温度以下区域突然变化。这是因为钢液凝固后发生初生的δ相→γ相的转变,并伴随有比容变化,使得热膨胀系数急剧上升;当〔C〕=0.100 %时,热膨胀系数从两相区开始发生突变。这是因为钢液凝固时,液相和δ相发生包晶反应,转变成γ相,剩余的δ相继续向γ相转变。转变过程中的比容变化也引起热膨胀系数的急剧上升。
图3 碳钢的瞬时线性热膨胀系数曲线
3条曲线中,非零值起始点为零强度温度对应点;
A、B、C为固相线温度对应点
Fig.3 Instant linear thermal expansion
coefficient of carbon steel
另外,〔C〕=0.045 %的δ相→γ相转变温度区间较窄,转变较快(见图1),因此线性热膨胀系数突变值较大。相比之下,〔C〕=0.100 %的热膨胀系数突变值要小一些。虽然如此,但由于后者的相变温度区间较宽,其热膨胀系数突变的温度区间也较宽。由此可推断,〔C〕=0.100 %时发生的包晶相变对初生坯壳凝固收缩的影响将大于〔C〕=0.045 %时发生的δ相→γ相转变的影响。
〔C〕=0.200 %钢的热膨胀系数没有发生突变。这是因为,虽然也有包晶相变发生,但它只发生在某个温度水平上(约1 495 ℃),故对热膨胀系数的影响很小。
2.2 铸坯表面收缩量
图4示出〔C〕=0.045 %、0.100 %和0.200 % 3种钢的铸坯表面收缩量沿拉坯方向和横断面方向的变化情况 ( 其中底部的空间斜平面为结晶器铜板
图4 铸坯表面收缩量
(a) 〔C〕=0.045 %; (b) 〔C〕=0.100 %; (c) 〔C〕=0.200 %
Fig.4 Surface shrinkage of billet
内壁面)。从图中可以看出:铸坯角部在凝固的初期就收缩并脱离结晶器铜板,而靠近中间处几乎始终与铜板接触(只有〔C〕=0.100 %的钢在靠近出口处才保持分离)。越靠近角部收缩脱离越早,收缩量也越大。
在钢水静压力作用下,收缩的坯壳会被压回结晶器铜板,从而使坯壳收缩发生波动〔收缩面曲面图呈犬牙状(见图4)〕。靠近弯月面区域坯壳较薄,波动现象较为明显。另外,越靠近角部波动也越明显。初生坯壳的这种收缩波动会导致应力集中,容易诱发裂纹等表面缺陷。
比较3种碳钢铸坯的表面收 缩 量 可 知:〔C〕=0.100 %钢的收缩最显著,收缩波动最大(弯月面区域),且波动沿横断面方向扩展最广;〔C〕=0.200 %钢的收缩量最小。
2.3 弯月面区域角部初生坯壳收缩状况
图5示出3种碳钢的铸坯角部在靠近弯月面区域的收缩情况。可以看出:在离弯月面20 mm范围内,铸坯角部就脱离了结晶器铜板,其中〔C〕=0.045 %钢脱离最早,这是因为该钢种的固相线温度最高,最早凝固形成坯壳;〔C〕=0.100 %钢在形成初生坯壳后发生强烈收缩,但在离弯月面50 mm处被增大的钢水静压力压回,然后又继续收缩。该钢种初生坯壳收缩最显著,收缩波动也最大,因此最容易诱发铸坯表面缺陷;〔C〕=0.045 %钢的初生坯壳收缩量和收缩波动程度明显地降低;〔C〕=0.200 %钢的初生坯壳收缩量和收缩波动程度最小。
图5 弯月面区域初生坯壳角部收缩量
Fig.5 Shrinkage of initial shell ofbillet corner at meniscus
3 结 论
(1)对于碳含量在0.1 %附近的包晶钢,其初生坯壳在结晶器上部和靠近角部区域的收缩很不规则,容易诱发铸坯表面缺陷。
(2)坯壳不规则收缩主要集中在弯月面下100 mm范围内。由此可知,结晶器上部的锥度并不适合坯壳收缩。因此,应通过优化结晶器锥度来提高拉坯速度。一个重要的指导原则是在结晶器上部采用较大锥度,以促使坯壳与铜板良好接触。
F. 工程材料 中杠杆原理 谁能详细说明下 就是用来计算各成分量的那个原理
在工程材料中没有杠杆原理,只有杠杆定律,杠杆定律适用所有两相平衡。
杠杆规则广泛应用在相平衡中,可以简述为 “一相的量乘以本侧线段长度, 等于另一相的量乘以另一侧线段的长”。由于形式上与力学中杠杆定理十分相似,故称为杠杆定律。
杠杆定律是确定两相区内两个组成相(平衡相)以及相的成分和相的相对量的重要法则。
若要确定成分为C含量Wc=x%的铁碳合金在t温度下是由哪两个相组成以及各相的成分时,可通过该合金线上相当于t温度画一水平线,水平线所接触的两个相区中的相就是该合金在t温度时共存的两个相,交点的横坐标就是在该温度下平衡的两个相的成分,两相的相对量和水平线被Wc=x%合金线分成的两线段的长度成反比。
(6)杠杆规则计算扩展阅读:
利用杠杆定律求解铁碳合金的相组分和组织组分的相对量,关键在于分清相组分和组织组分两个概念以及确定杠杆的支点和成分点。
由于杠杆定律只适用于两相区,因此必须依据合金的平衡结晶过程,找出对应的两相区,使组织组分与相应的相组分相对应,才能用杠杆定律计算组织组分和相组分的相对百分含量。