❶ 为什么在生活中要使用杠杆的原理
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向下杠杆是等臂杠杆;第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点在中间,动力臂小于阻,是费力杠杆。
费力杠杆例如:剪刀、钉锤、拔钉器……杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;还要看重点(阻力点)和支点的距离:重点离支点越近则越省力,越远就越费力;如果重点、力点距离支点一样远,如定滑轮和天平,就不省力也不费力,只是改变了用力的方向。
省力杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)剪纸板时,花剪较省力但是费时;而洋裁剪则费力但是省时。
1.剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大。用动力臂较长、阻力臂较短的剪刀。
2.剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,刀口要比较长。用动力臂较短、阻力臂较长的剪刀。
3.剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为了加快修剪速度,剪切整齐,要求剪刀刀口要长。用动力臂较长、阻力臂较短,同时刀口较长的剪刀。
❷ 杠杆的作用是什么
转载以下资料供参考
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现
❸ 杠杆有什么作用有什么好处
杠杆
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。"
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水。在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的。
定义:一根硬棒,在力的作用下,能绕着固定点转动,这根硬棒就是杠杆。
杠杆平衡条件:动力臂×动力=阻力臂×阻力
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向下杠杆是等力杠杆;第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点在中间,动力臂小于阻,是费力杠杆。
第一种杠杆例如:剪刀、钉锤、拔钉器……杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长剪纸板花剪较省但是费时;而洋裁剪则费力但是省时。
生活中的杠杆
1.剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大。用动力臂较长、阻力臂较短的剪刀。
2.剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,刀口要比较长。用动力臂较短、阻力臂较长的剪刀。
3.剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为了加快修剪速度,剪切整齐,要求剪刀刀口要长。用动力臂较长、阻力臂较短,同时刀口较长的剪刀。
投资中的杠杆
杠杆比率
认股证的吸引之处,在于能以小博大。投资者只须投入少量资金,便有机会争取到与投资正股相若,甚或更高的回报率。但挑选认股证之时,投资者往往把认股证的杠杆比率及实际杠杆比率混淆,两者究竟有什么分别?投资时应看什么?
想知道是否把这两个名词混淆,可问一个问题:假设同一股份有两只认股证选择,认股证A的杠杆是6.42倍,而认股证B的杠杆是16.22倍。当正股价格上升时,哪一只的升幅较大?可能不少人会选择答案B。事实上,要看认股证的潜在升幅,我们应比较认股证的实际杠杆而非杠杆比率。由于问题缺乏足够资料,所以我们不能从中得到答案。
杠杆比率=正股现货价÷(认股证价格x换股比率)
杠杆反映投资正股相对投资认股证的成本比例。假设杠杆比率为10倍,这只说明投资认股证的成本是投资正股的十分之一,并不表示当正股上升1%,该认股证的价格会上升10%。
以下有两只认购证,它们的到期日和引伸波幅均相同,但行使价不同。从表中可见,以认购证而言,行使价高于正股价的幅度较高,股证价格一般较低,杠杆比率则一般较高。但若投资者以杠杆来预料认股证的潜在升幅,实际表现可能令人感到失望。当正股上升1%时,杠杆比率为6.4倍的认股证A实际只上升4.2%(而不是6.4%),而杠杆比率为16.2倍的认股证B实际只上升6%(而不是16.2.%)。
❹ 五年级下册科学杠杆在生活中有那些用途
杠杆是一种简单机械。
在力的作用下能绕着固定点转动的硬棒就是杠杆。
在生活中根据需要,杠杆可以是任意形状。
跷跷板、剪刀、扳子、撬棒、钓鱼竿等,都是杠杆。
滑轮是一种变形的杠杆,定滑轮的实质是等臂杠杆,动滑轮的实质是阻力臂是动力臂一半的省力杠杆。
杠杆五要素
支点:杠杆绕着转动的点,通常用字母O来表示。
动力:使杠杆转动的力,通常用F1来表示。
阻力:阻碍杠杆转动的力,通常用F2来表示。
动力臂:从支点到动力作用线的距离,通常用L1表示。
阻力臂:从支点到阻力作用线的距离,通常用L2表示。
(注:动力作用线、阻力作用线、动力臂、阻力臂皆用虚线表示。力臂的下角标随着力的下角标而改变。例:动力为F3,则动力臂为L3;阻力为F5,阻力臂为L5.)
❺ 生活中的杠杆原理应用
杠杆原理基本有3种类型,第一类的杠杆例子是天平、剪刀、钳子等,第二类杠杆的例子是开瓶器、胡桃夹,第三类杠杆如锤子、镊子等。
杠杆分为3种杠杆。第一种是省力的杠杆,如:开瓶器等。第二种是费力的杠杆,如:镊子等。第三种是既不省力也不费力的杠杆,如:天平、钓鱼竿等。
还有工程上的吊车,滑轮等。
(5)杠杆在生活中有什么作用扩展阅读:
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
如钳子、杆秤杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。
动力×动力臂=阻力×阻力臂,用代数式表示为F1•l1=F2•l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。
从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。
但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。杠杆可分为省力杠杆、费力杠杆和等臂杠杆。
❻ .杠杆在我们的生活的应用是非常多的。杠杆有什么作用呢请写出你的猜想和研究方案。
杠杆可以省力,动力臂越长用力越小。研究方案可以通过一根竹竿撬石头来做,随意改变支点的位置和动力臂的长度来看撬动石块所用的力气大小。
❼ “杠杆” 一般在生活 工作中 用来比喻什么样 什么作用的事情呢
一般指公平