❶ 支付宝什么时候能炒股
支付宝什么时候能炒股?这个我们都不好去肯定时间,或许马哥有想开发炒股这一块的想法。在支付宝上不是有竞猜股票涨跌吗?这不光是给我们理财吧?至于什么时候能炒股?我们还是拭目以待。
❷ 马哥,- -,我想开户玩股票,比如我开5000·但是如果我的股票赔到了5100我还需要垫付100不嘛
不需要,理论上最多就只可能亏损5000元而已。
只要你不进行“保证金交易”,或者叫做杠杆交易,就不存在这个问题。
实际中炒股彻底亏光的可能性也是不存在的。
即便公司倒闭退市,也会有清算资产。
❸ Python培训班一般都有什么上课内容
下面是Python全栈开发+人工智能的培训内容:
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
❹ 马哥,你好,我对理财投资,一无所知,但我却有强烈的理财愿望,我该从那几个步骤开始。
1,先存余额宝,天天记账。
2,看有关的书,复利的力量,为何有借贷利率,人生的几个财务阶段,股票概念,债券概念,保险概念
3,尝试一种理财手段,比如基金定投,拍拍贷,黄金定存等。
4,贷款买房。
有了这4步,我估计你自己就能找到方向了
❺ python培训机构具体都学习哪些内容
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
❻ 谁能回答一些为什么马化腾这不要脸
楼主你这就不懂了吧!想当年马哥出道也是有一些传奇的经历的。传说马哥当年在潮阳街头混身上没有一分钱 怎么办 没钱可不行呀 人总要填饱肚子吧。他看见街头有个小朋友掏钱要买吃的 就走上去对小朋友说:“小朋友今天身上带了几块钱呀:”小朋友很好奇的看着马哥 回答说:“今天爸爸妈妈给了我5块零花钱。”马哥就对小朋友说小朋友你是用钱买这个吃呢?还是必胜客呢?”小朋友说当然是必胜客了,只是我没钱呀?马哥说不怕:叔叔这有钱,叔叔带你去吃去!小朋友非常高兴。就这样马哥带着这个小朋友来到了必胜客点了很多的好吃的。马哥和小朋友都吃饱了 马哥说:“小朋友你知道为什么叔叔带你来吃必胜客吗?小朋友那能猜到 对马哥说不知道呀。叔叔今天有钱了 刚前天叔叔用了100块钱买了一支股票结果今天就赚了10000块 小朋友你也想赚钱吗 如果想的话 把你的五块票票给叔叔,叔叔啊能帮你赚来五百块你看怎么样。小朋友说真的吗 那太好了 随手拿出那张已经捏不知多少次的五块,交给了马哥。马哥说小朋友啊在这等叔叔 叔叔去去就来 买到了股票 叔叔把股票交给你 保证 不出2到3天就能涨到时你的5块就成500块咯!小朋友得意地笑了笑,又叫服务员点了一杯果汁。马哥走到门口对 服务台的小姐说 美女我去下对面银行先取些现钱花,我儿子在这里,我马上回来。就这样马哥走了出去 白吃了一顿又骗来了五块票票 这样的事对马哥来说是习以为常 所以脸皮对马哥来说值几个钱 能混几口饭吃。马哥还恨不得在自己脸上镶上纯金,看你子弹硬还是我的脸皮厚!
❼ 求证券投资基础分析论文
统计学在证券期货市场中的应用[1]
发布时间: 2003-12-21 作者:
摘 要:李从珠,丁绍芳,王灵华,孙大宁.统计学在证券期货制场中的应用.
本文较系统地介绍了统计学在证券期货市场中的应用,其中包括作者的一些最新研究成果,如:证券期货市场指标体系的研究;新华财经指数的编制;证券投资组合的研究与应用等。
关键词:统计学 证券市场 期货市场
分类号:O212 C8 F832.5 文献标识码:A
文章编号:1002-1566(2000)01-0054-04
The Application of Statistics on Securities and Futures Markets
LI Cong-zhu,DING Shao-fang,WANG Ling-hua,SUN Da-ning
(North China University of Technology,100041)
Abstract:In this paper,the Application of Statistics on Securities and Futures Markets is introced,author's many new achievements are included in it,such as study of index system on Securities and future markets;study of Xin Hua index number of securities;study and application of investment in bond and so on.
Key Words:statistics securities markets futures markets▲
一、序 言
我国自九十年代初建立证券期货市场以来,短短几年,得到了迅猛发展,方兴未艾。仅拿股市来看(截至1999年07月13日),在沪深两市上市的境内公司已达900家,沪深市场的A,B股股数是981只,上市公司900家,其中沪市501只(461家),深市480只(439家),沪深A股股数874只,B股股数107只。这与1991年沪市8家深市6家上市公司相比,可见发展速度之快。市价总值21083亿元人民币,占国内生产总值的比重超过25%;开办证券90家,兼营证券业务的信托投资公司237家,下属证券营业部2400多家;现有43家境内企业海外上市,累计筹集资金100多亿美元;已有107家公司成功发行了B股,筹集资金近50亿美元;股民已达4000多万。自1999年五月十九日井喷式行情以来,沪深两市的日成交量猛增,至六月二十五日高达800多亿(1998年8月18日香港股市一天的成交量为790亿港元),创下空前的天量。证券市场的作用愈来愈大,并逐渐成为国民经济的晴雨表。
统计学及其相关学科在证券期货交易中有什么作用呢?我们先从世界范围谈起。
据有关报道,当今华尔街最抢手的不再是传统的MBA,而是有统计背景、数理能力强的人才。一些在美国获得统计或数学博士学位的中国留学生被华尔街录用,转眼间便当上了年薪百万美元的“白领”贵族。如,1984年入中国科学技术大学少年班的黄沁于1988年提前毕业,赴美国麻省理工学院就读研究生,毕业后受聘到华尔街某大型证券公司工作。在这个世界上金融证券业最发达的地方,他以统计和数学为基础,建立了自己的投资理论,现已升任该公司副总裁,主管对外投资工作。年仅27岁的黄沁是进入华尔街金融界高层领导的少数华人之一。
华尔街取才原则的转向,从一个侧面反映出证券期货等金融业目前发展面临的挑战和未来的潮流。证券金融交易是信息量最大,信息敏感度最强、信息变化频度最高的领域。随着市场日趋复杂,数字已成为传递信息最直接的裁体,加上未来的经济是被网络覆盖与笼罩的数字化经济,大量的数学与统计工具将在分析研究中发挥不可或缺的重要影响。能否把握那看似枯燥无味的数字所隐含的精微变化,成为决定未来竞争成败的关键因素之一。
前年诺贝尔经济学奖授予在期权定价方面做出开拓性贡献的经济学家和统计学家。他们在二十多年前就探索出具有划时代意义的定价模型——布莱克.斯科尔期定价公式。本世纪20年代开设了股票期权品种,由于采用柜台交易方式和缺乏标准化的设计合约,很难转让对冲,交易量不足称道。1973年美国经济学家布莱克和斯科尔斯,引进概率统计上随机变量函数的一些定理和积分求值,推导出不支付红利的股票期权定价公式,从此期权有了明确科学的价格定位依据,很快形成一个完整的市场,并迅速推广到全世界,直至现在,期权占据着金融王国的重要位置。定价公式成为整个市场运转的基础。这个期权公式的定价思想所引发的金融革命表现在,预测远期价格成为可能,不仅使期权为指数、货币、利率、期货交易提供了全新的保值,投资手段,极大地丰富了金融市场,而且进一步推动了对各种金融产品的价值研究,提高了操作的理论水平。由此可以推断,没有布莱克.斯科尔斯定价模型,期权就不可能发展这么快,全球金融衍生品市场也就不可能有今天的高度发达,如今国外大型金融机构在总结金融交易失利原因时,总是首先追究最初的定价是否存在漏洞和错误
建立一个模型就摘取经济领域的桂冠这一事实,体现了经济与统计数学密不可分的关系。据不完全统计,自1969年设立诺贝尔经济学奖以来的40多位获奖者中,著名的计量经济学家有23位,10位担任过世界计量经济学会会长,有六位直接靠计量经济的研究和应用成果获奖。借用统计数学,将经济理论数学公式化,将经济行为定量化,已成为当今世界经济的热门课题。
有关专家指出,统计学,经济理论和数学这三者对于真正了解现代经济生活中的数量关系来说,都是必要的,但本身并非充分条件。三者结合起来,就是力量。数学给经济界带来新的视角,新的观念。抽象的数学工具一旦准确地切入金融市场,就显得非常实用和有价值。二十多年来,指导期权交易的理论—定价模型得到广大投资者的一贯遵循。没有统计基础、不懂定价公式含义的人要想在市场有出色表现将是十分困难的。
证券金融市场的风险管理是个永恒的话题,投资者都想寻求收益回报,但又必须面对各种各样的损失可能。市场到底存在哪些风险,如何确定风险的大小,如何才能实现收益最大化和风险最小化,历来都是受人关注的焦点和难点。自从1952年美国学者马柯威茨运用数量方法创立证券组合理论以来,市场风险的神秘色彩逐渐淡化,不再变得那么可怕和不可驾驭。
马柯威茨组合理论的立足点是全面考虑“期望收益最大”和“不确定性(即风险)最小”。它通过总结投资损失的概率分布和可能收益与预期收益的偏离程度(即我们统计学上的方差),发现投资者应该同时按适当比例购买各种证券而不是一种证券,进行分散化投资,其收益才尽可能是确定的。通过数量分析得出的这种结论,迎合了投资者避风险的需要。风险管理能力的提高促进了基金的蓬勃发展。在短短的几十年间,随着量化研究的不断深入,组合理论及其实际运用方法越来越完善,成为现代投资学中的主流工具。由于马哥威茨证券组合选择理论给金融投资和管理思想带来革新,1990年他获得了诺贝尔经济学奖。
众所周知,量变引起质变。数量关系的背后,牵扯着市场的稳定与发展。金融业的现代化推动了统计与数理方法的应用研究,反过来,当今世界的金融管理特别是防范金融风险,也越来越要量化研究。早在1995年9月,美国斯但福大学经济学教授刘遵义就通过实证比较,数量分析和模糊评价等方兴,预测出菲律宾、韩国、泰国、印尼和马来西亚有可能发生金融危机。后来的事实果然如此。这从一个侧面提醒我们,没有完整、科学的分析预测工具,就可能在国际金融竞争中蒙受重大损失。只有加强对作为金融信息的各种变量的研究,才能提高对金融运行规律的认识,才能把握市场的发展动向。
经济理论的数学化和统计分析,使各种经济行为也越来越数量化。在金融领域也不例外。定价公式和组合理论地位的确立,就证明数量工具已发挥了不可磨灭的作用。有统计显示,在西方金融市场,三分之一的人运用组合理论来投资,三分之一的人靠技术分析管理头寸,另外三分之一的人仍在坚守基础分析。虽然运用何种手段来指导决策是投资者个人偏好、观念的问题,但组合理论和技术分析所运用的统计工具逐渐被认同,说明理性投资将成为市场的宠儿。由此我们不难理解华尔街选才的动机。
主观意见和直觉判断有很大的随意性,显然与现代投资决策的要求相去甚远。对市场和价格进行定量研究,从而揭示客观存在的数量依存关系,成为投资和管理决策的一项基础工作。用统计工具处理各种证券金融数据,可以比较全面地分析各种因素的影响力度。其主要表现在:
1 结构分析:证券市场与汇率、利率变动和国民经济发展有多大的关联度;单一证券与整个市场之间如何相互影响,市场指数设计是否合理;证券与期货价格走势是否相互制约;同一类证券有没有一定的连动关系。
2 价值预测:分析未来证券发行和上市价格的理论定位,确定金融衍生证券的价格,分析预测证券期货的价格走势,进行投资决策等。
3 政策评价:研究市场系统风险的预警及控制,探讨不同的组合投资效果。
4 理论检验:证券价格能否反映所有的信息,市场的有效性实证检验;各种技术指标的适用性和优化处理,周期效应的对比分析。
从以上可看出,量化研究有助于搞好风验管理,设计投资组合,选择交易时机,评估市场特性。统计工具在证券金融市场的大量应用,对交易技术的升级换代,管理水平的提高做出了特殊贡献。现在,电脑交易系统在国外大行其道,依据不同要求设计的模型软件层出不穷,只要把数据输入电脑中,投资者根据分析结果随时制订和调整投资计划。
投资者竞争的优势不再停留在信息的收集上,而是综合处理信息的能力。谁的模型从总量上与趋势上能更合理、科学地分析市场,谁就能掌握主动。
简单的统计和数学方法已经满足不了日益复杂的金融发展需要。随着统计和数学工具的推广应用,一门新兴的边缘科学——金融统计学应运而生。美国芝加哥大学、哥伦比亚大学、纽约大学和英国利兹大学先后确定了金融统计的硕士和本科生的培养计划。我国近几年来,像中国科技大学、南开大学和山东大学建立了统计金融系,去年北京大学相继成立了金融数学与金融工程管理中心、金融数学系;像北方工业大学统计学专业等建立的证券期货模拟实验室的也有很多家;开设相关专业的就更多了。
总之,统计学及其相关学科在证券期货交易中的重大作用愈来愈被人们所认识和重视。读者从本专题所讲的内容也将会有更深入和全面的了解。后面我们将结合我国证券期货交易的实际,介绍统计方法在证券期货市场的一些基础应用(包括我们的部分研究成果),如证券期货交易的统计指标体系;证券指数;投资组合;上市公司财物报表的统计分析与选股;证券期货价格走势预测(主要是技术分析)等。 相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板