Ⅰ 杠桿和滑輪定義以及它們的作用
物理學中把在力的作用下抄可以圍繞固定點轉動的堅硬物體叫做杠桿
滑輪是一個周邊有槽,能夠繞軸轉動的小輪。由可繞中心軸轉動有溝槽的圓盤和跨過圓盤的柔索(繩、膠帶、鋼索、鏈條等)所組成的可以繞著中心軸轉動的簡單機械叫做滑輪。
杠桿是分省力杠桿(動力臂大於阻力臂)和費力杠桿(阻力臂大於動力臂)
定滑輪不省力,但改變力的方向(不省功)
動畫輪省力,但不改變力的方向也費距離(不省功)
滑輪組結合了定滑輪和動滑輪的優點即改變力方向也省力,但也費距離,省力的多少要看繞在動滑輪的繩子段數多少(不省功)
Ⅱ 杠桿,動滑輪,定滑輪,滑輪組。那個機械效率最高
杠桿沒有可比性,是完全不同的東西,機械效率可能比滑輪高,也可能比滑輪低。
相同的滑輪可比
單個滑輪相比,定滑輪高於動滑輪,動滑輪的還要加上自身重量帶來的額外功。
滑輪組效率一般比單個滑輪低,多個滑輪的摩擦力做的額外功會明顯要高。
所以單個定滑輪的機械效率要高些。
Ⅲ 滑輪組省力原理
定、動滑輪組裝成滑輪組使用時,可以增加與繞過動滑輪的繩子股數,以使阻力可以分擔到更多股的繩子上,從而實現更力的目的,但為省力必須付出的代價是:作用在繩子自由端的動力需要移動更遠的距離,即費距離。
因為功的原理表明:使用機械時,省力的機械必費距離,省距離的機械必費力,不存在既省力又省距離的機械。
使用中,省力多少和繩子的繞法,決定於滑輪組的使用效果。動滑輪被幾根繩子承擔,力就是物體和動滑輪總重的幾分之一。原則是:n為奇數時,繩子從動滑輪為起始。
用一個動滑輪時有三段繩子承擔,其後每增加一個動滑輪增加二段繩子。如:n=5,則需兩個動滑輪(3+2)。n為偶數時,繩子從定滑輪為起始,這時所有動滑輪都只用兩段繩子承擔。如:n=4,則需兩個動滑輪(2+2)。
其次,按要求確定定滑輪個數,原則是:一個動滑輪一般配一個定滑輪。力作用方向不要求改變時,偶數段繩子可減少一個定滑輪;要改變力作用方向,需增加一個定滑輪。
(3)定滑輪滑輪組杠桿會省功嗎擴展閱讀
在使用滑輪組移動重物的過程中,物體移動時受到的阻力是我們「工作」的目的,可以稱這部分阻力為「有用阻力」,但由於使用了滑輪(組),我們在移動重物克服「有用阻力」的同時,不得不克服由機械帶來的「額外阻力」——機械自身重力(如動滑輪重、繩重)和摩擦。
定滑輪可以改變力的方向,但不能省力地拉動物體。動滑輪不可以改變力的方向,但能省一半的力地拉動物體。滑輪組結合了定滑輪和動滑輪,這樣既可以改變力的方向,又能很省力地拉動物體。若不計滑輪組使用中所做的額外功,動滑輪用的越多越省力。
Ⅳ 滑輪組為什麼省力 動滑輪可以用杠桿說過去,那動滑輪呢
除定滑輪外【定滑輪】滑輪的軸固定不動,它實質上是一個等臂杠桿。動力臂和阻力臂都是滑輪的半徑r,根據杠桿原理fr1=wr2。它的機械利益為
變了動力的方向,如要把物體提到高處,本應用向上的力,如利用定滑輪,就可以改用向下的力,因而便於工作。
【動滑輪】滑輪的軸和重物一起移動的滑輪。它實質上是一個動力臂二倍於阻力臂的杠桿。根據杠桿平衡的原理wr=f·2r,它的機械利
改變用力的方向。其方向是與物體移動的方向一致。
【滑輪組】動滑輪和定滑輪組合在一起叫「滑輪組」。因為動滑輪能夠省力,定滑輪能改變力的方向,若將幾個動滑輪和定滑輪搭配合並而成滑輪組,既可以改變力的大小,又能改變力的方向。普通的滑輪組是由數目相等的定滑輪和動滑輪組成的。而這些滑輪或者是上下相間地坐落在同一個輪架(或叫「輪轅」),或者是左右相鄰地裝在同一根軸心上。繩子的一端固定在上輪架上,即相當於系在一個固定的吊掛設備上,然後依次將繩子繞過每一個下面的動滑輪和上面的定滑輪。在繩子不受拘束的一端以f力拉之,被拉重物掛在活動的輪架上。對所有各段繩子可視為是互相平行的,當拉力與重物平衡時,則重物w必平均由每段繩子所承擔。若有n個定滑輪和n個動滑輪時,
且為勻速運動時,則所需之f力的大小仍和上面一樣。因此,在提升重物時才能省力。其傳動比乃為f∶w=1∶2n。注意,在使用滑輪組時,不能省功,只能省力,但省力是以多耗距離(即行程)為前題的。
前邊所分析的定滑輪、動滑輪以及滑輪組,都是在不計滑輪重力,滑輪與軸之間的摩擦阻力的情況下得出的結論。但在使用時,實際存在輪重和摩擦阻力,所以實際用的力要大些。
Ⅳ 滑輪組的省力原理是什麼物理
提問
網路知道
滑輪組省力原理?
滑輪組是由動滑輪和定滑輪組成的。動滑輪和定滑輪的力都可以用杠桿原理解釋。那麼滑輪組呢?求圖解如下圖的滑輪組,理想狀態下只用三分之一的力,可不可以用杠桿原理解釋?
求不要復制黏貼,懇求各位大神能給學弟一個解答,謝謝
展開
我來答
1條回答
還是當下
LV.8 2017-05-22
杠桿原理的本質就是用功能原理解釋的啊,使用機械時,人們所做功,都等於不用機械而直接用手所做的功,也就是使用任何機械都不省功
這里,提高繩子一端,設提高的高度為L,物體只是移動了提高的距離的1/3,而功=力乘以距離,因此FL=MgL/3,所以力為Mg/3,省力必須費距離,兩者乘積就是功是不變的對應理想的(無摩擦力)機械
也可以這樣理解,繩子是靜止的,它的張力處處都是F才能平衡維持靜止,這個物體被三段繩子拉著,每一段的力量都是F,所以3F=Mg
Ⅵ 滑輪組和杠桿是
滑輪組是由若干個定滑輪和動滑輪匹配而成,可以達到既省力又改變力作用方向的目的。使用中,省力多少和繩子的繞法,決定於滑輪組的使用效果。動滑輪被兩根繩子承擔,即每根繩承擔物體和動滑輪
力就是物體和動滑輪總重的幾分之一。
數,原則是:n為奇數時,繩子從動滑輪為起始。用一個動滑輪時有三段繩子承擔,其後每增加一個動滑輪增加二段繩子。如:n=5,則需兩個動滑輪(3+2)。n為偶數時,繩子從定滑輪為起始,這時所有動滑輪都只用兩段繩子承擔。如:n=4,則需兩個動滑輪(2+2)。
其次,按要求確定定滑輪個數,原則是:一個動滑輪一般配一個定滑輪。力作用方向不要求改變時,偶數段繩子可減少一個定滑輪;要改變力作用方向,需增加一個定滑輪。
綜上所說,滑輪組設計原則可歸納為:奇動偶定;一動配一定,偶數減一定,變向加一定。
滑輪
由可繞中心軸轉動有溝槽的圓盤和跨過圓盤的柔索(繩、膠帶、鋼索、鏈條等)所組成的可以繞著中心軸轉動的簡單機械。滑輪是杠桿的變形,屬於杠桿類簡單機械。在我國早在戰國時期的著作《墨經》中就有關於滑輪的記載。中心軸固定不動的滑輪叫定滑輪,是變形的等臂杠桿,不省力但可以改變力的方向。中心軸跟重物一起移動的滑輪叫動滑輪,是變形的不等臂杠桿,能省一半力,但不改變力的方向。實際中常把一定數量的動滑輪和定滑輪組合成各種形式的滑輪組。滑輪組既省力又能改變力的方向。
工廠中常用的差動滑輪(俗稱手拉葫蘆)也是一種滑輪組。滑輪組在起重機、卷揚機、升降機等機械中得到廣泛應用。
滑輪有兩種:定滑輪和動滑輪
(1)定滑輪實質是等臂杠桿,不省力也不費力,但可改變作用力方向.
定滑輪的特點
通過定滑輪來拉鉤碼並不省力。通過或不通過定滑輪,彈簧秤的讀數是一樣的。可見,使用定滑輪不省力但能改變力的方向。在不少情況下,改變力的方向會給工作帶來方便。
定滑輪的原理
定滑輪實質是個等臂杠桿,動力L1、阻力L2臂都等於滑輪半徑。根據杠桿平衡條件也可以得出定滑輪不省力的結論。
(2)動滑輪實質是動力臂為阻力臂二倍的杠桿,省1/2力多費1倍距離.
動滑輪的特點
使用動滑輪能省一半力,費距離。這是因為使用動滑輪時,鉤碼由兩段繩子吊著,每段繩子只承擔鉤碼重的一半。使用動滑輪雖然省了力,但是動力移動的距離大於鉤碼升高的距離,即費了距離。
動滑輪的原理
動滑輪實質是個動力臂(L1)為阻力臂(L2)二倍的杠桿。
(3)滑輪組:由定滑輪跟動滑輪組成的滑輪組,既省力又可改變力的方向.
滑輪組用幾段繩子吊著物體,提起物體所用的力就是總重的幾分之一.繩子的自由端繞過動滑輪的算一段,而繞過定滑輪的就不算了.
使用滑輪組雖然省了力,但費了距離,動力移動的距離大於重物移動的距離.
滑輪組的用途:
為了既節省又能改變動力的方向,可以把定滑輪和動滑輪組合成滑輪組。
省力的大小
使用滑輪組時,滑輪組用幾段繩吊著物體,提起物體所用的力就是物重的幾分之一。
滑輪組的特點
用滑輪組做實驗,很容易看出,使用滑輪組雖然省了力,但是費了距離——動力移動的距離大於貨物升高的距離。
滑輪組原理
有的中學物理教科書認為,利用滑輪組運輸或提升貨物,只能省力,但不能省功,中學物理教科書的上述結論對從事機械
械傳動設計工作的工程師影響極大,由於汽車、火車、輪船等運輸裝置和各種機械裝置在使用的過程中會頻繁地出現啟動、加速、減速、停止等各種運動,並在啟動、加速、減速、停止等各種運動過程中消耗大量的能量,完全需要在理論上說明怎樣設計或使用汽車、火車、輪船等運輸裝置的傳動系統,以使其處於最佳節能狀態,但中學物理教科書的上述結論使得機械工程師在從事機械傳動設計時,以及在指導人們使用運輸車輛和機械裝置時,往往忽略了滑輪組的段數或減速機的傳動比在各種狀態下與節能的關系,造成現有的許多運輸車輛和機械傳動裝置在運行過程中的能量消耗較高,輸送貨物數量較少。
下面通過分析兩個物理習題的方式說明利用滑輪組牽引物體,不僅可以省力,而且可以通過將更多的物體輸送至目的地的形式節約能源。
對於沿水平方向作牽引物體運動的滑輪組
分析如下:
一個質量為m的物體M放置在水平面上,利用滑輪組通過繩子與物體M相連,繩子牽引物體M的段數為K,繩子的牽引力為F,利用動力裝置使物體M沿水平面由靜止狀態開始作加速運動,則由牛頓運動定律可知:
KF=ma2 (1)
式中a2為物體M的加速度,並且
a2=a1/K (2)
式中a1為滑輪組輸入端繩子的加速度,解(1)、(2)式可得:
a1=K2F/m (3)
使用滑輪組的目的是運輸或提升一定數量貨物到達目的地,每個從事具體勞動的人都希望多拉快跑,即省力、又迅速地完成工作。為了對比使用滑輪組與不使用滑輪組的區別,令滑輪組輸入端繩子的加速度在使用滑輪組與不使用滑輪組時都為a1值,在此狀態下動力裝置輸出的功率相等,設不使用滑輪組時(K=1)動力裝置運輸的物體M質量為m′,使用滑輪組時動力裝置運輸的物體M質量為m,則有:
F/m′=K2F/m (4)
化簡後可得:
m=K2m′ (5)
但使用滑輪組時動力裝置運輸物體M的距離是不使用滑輪組時的L/K,為了便於對比,分別令兩種狀態下的動力裝置工作K次,這樣一來,使用滑輪組的動力裝置就可將質量為K2m′的貨物輸送至L距離,不使用滑輪組的動力裝置則將質量為Km′的貨物都輸送L距離,此時通過對比可見,使用滑輪組時動力裝置運輸的物體M質量m為不使用滑輪組時動力裝置運輸的物體M質量m′的K倍。
當物體M的運動存在摩擦阻力f時,則式(1)變為
KF-f=ma2 (6)
其中f=μmg,μ為摩擦系數。
解(2)、(6)式,並將f=μmg帶入可得:
a1=(K2F-Kμmg)/m (7)
同樣令滑輪組輸入端繩子的加速度在使用滑輪組與不使用滑輪組時都為a1值,在此狀態下動力裝置消耗的功率相等,設不使用滑輪組時(K=1)動力裝置運輸的物體M質量為m′,使用滑輪組時動力裝置運輸的物體M質量為m,則有:
(F-μm′g)/m′=(K2F-Kμmg)/m (8)
化簡後可得:
m=K2Fm′/(F+Kμm′g -μm′g) (9)
同樣地,使用滑輪組時動力裝置運輸物體M的距離是不使用滑輪組時的L/K,為了便於對比,分別令兩種狀態下的動力裝置工作K次,這樣一來,使用滑輪組的動力裝置就可將質量為K2Fm′/(F+Kμm′g -μm′g)的貨物輸送至L距離,不使用滑輪組的動力裝置則將質量為Km′的貨物都輸送L距離,此時通過對比可見,使用滑輪組時動力裝置運輸的物體M質量m為不使用滑輪組時動力裝置提升的物體M質量m′的KF/(F+Kμm′g-μm′g)倍。也就是說,利用滑輪組牽引物體,在某些條件下使運輸車輛和機械傳動裝置不僅可以省力,而且可以通過將更多的物體輸送至目的地的形式節約能源。
由於汽車、火車、輪船等運輸裝置在使用的過程中會頻繁地出現啟動、加速、減速、停止等各種運動,並在啟動、加速、減速、停止等各種運動過程中消耗大量的能量,上述結論可以在理論上被用來指導和說明設計或使用汽車、火車、輪船等運輸裝置的傳動系統,以使其處於最佳節能狀態。例如,汽車、火車、輪船等運輸裝置在啟動、加速階段可以採用大傳動比的傳動系統,開足馬力全力沖刺,而不要採用傳動比小的傳動系統。
對於沿垂直方向作牽引物體運動的滑輪組或者是減速機分析如下:
一個質量為m的物體M懸掛在空中,利用滑輪組的輸出端通過繩子與物體M相連,繩子牽引物體M的段數為K,繩子的牽引力為F,利用動力裝置使物體M在空中由靜止狀態開始作向上的加速運動,則由牛頓運動定律可知:
KF-mg=ma2 (10)
式中a2為物體M的加速度,並且
a2=a1/K (11)
式中a1為滑輪組輸入端繩子的加速度,解(11)、(12)式可得:
a1=(K2F-Kmg)/m (12)
使用滑輪組的目的是運輸或提升一定數量貨物到達目的地,每個從事具體勞動的人都希望多拉快跑,即省力、又迅速地完成工作。為了對比使用滑輪組與不使用滑輪組的區別,令滑輪組輸入端繩子的加速度在使用滑輪組與不使用滑輪組時都為a1值,在此狀態下動力裝置輸出的功率相等,設不使用滑輪組時動力裝置運輸的物體M質量為m′,使用滑輪組時動力裝置運輸的物體M質量為m,則有:
(F-m′g)/m′=(K2F-Kmg)/m (13)
化簡後可得:
m=K2m′/〔1+(K-1)m′g/F〕 (14)
但使用滑輪組時動力裝置提升物體M的高度是不使用滑輪組時的h/K,為了便於對比,分別令兩種狀態下的動力裝置工作K次,這樣一來,使用滑輪組的動力裝置就可將質量為K2m′/〔1+(K-1)m′g/F〕的貨物提升至h高度,不使用滑輪組的動力裝置則將質量為Km′的貨物都提升至h高度,此時通過對比可見,使用滑輪組時動力裝置提升的物體M質量m為不使用滑輪組時動力裝置提升的物體M質量m′的K/〔1+(K-1)m′g/F〕倍。
當物體M的運動存在摩擦阻力f時,則式(11)變為
Ⅶ 定滑輪可以改變力的作用效果嗎
定滑輪不能改變力的作用效果,但是能改變力的作用方向
軸的位置固定不動的滑輪稱為定滑輪。定滑輪起不到省力的效果,但是可以改變力的方向,實質上是動力臂等於阻力臂的杠桿原理。使用定滑輪時,施力牽拉的距離等於物體上升的距離,繩索兩端的拉力相等,所以,輸出力等與輸入力,不計摩擦時,定滑輪的機械效率接近於1。定滑輪原理杠桿是人們生活和生產中常用的一種簡單機械,是在力的作用下能繞著固定點轉動的硬棒。杠桿可以是直的,也可以是彎曲的。杠桿的平衡原理:動力×動力臂=阻力×阻力臂。而滑輪是一種變形的杠桿,屬於杠桿類簡單機械,定滑輪的本質是等臂杠桿。
軸的位置隨被拉物體一起運動的滑輪稱為動滑輪。動滑輪實質是動力臂等於2倍阻力臂的杠桿(省力杠桿)。它不能改變力的方向,但最多能夠省一半的力,但是不省功。與定滑輪能夠組成滑輪組。是日常生活中常用的簡單機械
使用時,軸隨物體一起移動的滑輪叫做動滑輪。動滑輪可以看做是一個省力杠桿,O為杠桿的支點,滑輪的軸是阻力的作用點。被提升的物體對軸的作用力是阻力,繩對輪的作用力是動力。提升重物時,如果兩邊繩子平行,動力臂為阻力臂的兩倍;動滑輪平衡時,動力為阻力的一半。因此若不計動滑輪自身所受的重力,使用動滑輪可以省一半力,但這時卻不能改變用力的方向,向上拉繩才能將重物提起
Ⅷ 定滑輪,動滑輪,組成滑輪組的力怎麼分析
滑輪】滑輪是屬於杠桿變形的一種簡單機械,是可以繞中心軸轉動的,周圍有槽的輪子。使用時,根據需要選擇。滑輪可分為定滑輪、動滑輪、滑輪組、差動滑輪等。有的省力,有的可以改變作用力的方向,但是都不能省功。
【定滑輪】滑輪的軸固定不動,它實質上是一個等臂杠桿。動力臂和阻力臂都是滑輪的半徑r,根據杠桿原理Fr1=Wr2。它的機械利益為
變了動力的方向,如要把物體提到高處,本應用向上的力,如利用定滑輪,就可以改用向下的力,因而便於工作。
【動滑輪】滑輪的軸和重物一起移動的滑輪。它實質上是一個動力臂二倍於阻力臂的杠桿。根據杠桿平衡的原理Wr=F·2r,它的機械利
改變用力的方向。其方向是與物體移動的方向一致。
【滑輪組】動滑輪和定滑輪組合在一起叫「滑輪組」。因為動滑輪能夠省力,定滑輪能改變力的方向,若將幾個動滑輪和定滑輪搭配合並而成滑輪組,既可以改變力的大小,又能改變力的方向。普通的滑輪組是由數目相等的定滑輪和動滑輪組成的。而這些滑輪或者是上下相間地坐落在同一個輪架(或叫「輪轅」),或者是左右相鄰地裝在同一根軸心上。繩子的一端固定在上輪架上,即相當於系在一個固定的吊掛設備上,然後依次將繩子繞過每一個下面的動滑輪和上面的定滑輪。在繩子不受拘束的一端以F力拉之,被拉重物掛在活動的輪架上。對所有各段繩子可視為是互相平行的,當拉力與重物平衡時,則重物W必平均由每段繩子所承擔。若有n個定滑輪和n個動滑輪時,
且為勻速運動時,則所需之F力的大小仍和上面一樣。因此,在提升重物時才能省力。其傳動比乃為F∶W=1∶2n。注意,在使用滑輪組時,不能省功,只能省力,但省力是以多耗距離(即行程)為前題的。
前邊所分析的定滑輪、動滑輪以及滑輪組,都是在不計滑輪重力,滑輪與軸之間的摩擦阻力的情況下得出的結論。但在使用時,實際存在輪重和摩擦阻力,所以實際用的力要大些。
【差動滑輪】即鏈式升降機,是一種用於起重的滑輪組。上面是由兩個直徑不同裝在同一個軸上的圓盤A、B組成的定滑輪。下面是一個動滑輪,用鐵索與上面的定滑輪聯結起來而成滑輪組。若大輪A的半徑是R,小輪B的半徑是r,如圖1-25所示。當動力F拉鏈條使大輪轉一周,動力F拉鏈條向下移動了2πR,大輪捲起鏈條2πR,此時小輪也轉動一周,並放下鏈條長2πr於是動滑輪和重物W上升的高度為
由於2R大於(R-r),差動滑輪的機械利益大於1,若提高機械利益,可加大兩輪的半徑同時縮小兩輪間的半徑差。這種機械,亦稱「葫蘆」,有手動,也有用電來驅動的。鏈條是閉合的,為防止滑輪和鏈條間的滑動,滑輪上有齒牙與鏈條配合運動。
【斜面】簡單機械的一種,可用於克服垂直提升重物之困難。距離比和力比都取決於傾角。如摩擦力很小,則可達到很高的效率。用F表示力,L表示斜面長,h表示斜面高,物重為G。不計無用阻力時,根據功的原理,得
FL=Gh
傾角越小,斜面越長則越省力,但費距離。
【螺旋】屬於斜面一類的簡單機械。例如螺旋千斤頂可將重物頂起,它是省力的機械。千斤頂是由一個陽螺旋桿在陰螺旋管里轉動上升而將重物頂起。根據功的原理,在動力F作用下將螺桿旋轉一周,F對螺旋做的功為F2πL。螺旋轉一周,重物被舉高一個螺距(即兩螺紋間豎直距離),螺旋對重物做的功是Gh。依據功的原理得
很小的力,就能將重物舉起。螺旋因摩擦力的緣故,效率很低。即使如此,其力比G/F仍很高,距離比由2πL/h確定。螺旋的用途一般可分緊固、傳力及傳動三類。
【齒輪和齒輪組】兩個相互咬合的齒輪,在它們處於平衡狀態時,由力矩平衡方程可得
F·r1=G·r2
式中F表示作用力,G表示物重,r1和r2分別表示大、小齒輪的半徑。它們的機械利益為
(R為大齒輪半徑)。
【劈】亦稱「尖劈」,俗稱「楔子」。它是簡單機械之一,其截面是一個三角形(等腰三角形或直角三角形)。三角形的底稱作劈背,其他兩邊叫劈刃。施力F於劈背,則作用於被劈物體上的力由劈刃分解為兩部分,如圖1-26所示。P是加在劈上的阻力,如果忽略劈和物體之間的摩擦力,利用力的分解法,知P與劈的斜面垂直,P的作用可分成兩個分力:一個是與劈的運動方向垂直,它的大小等於P·cosα,對運動並無影響;另一個是與劈的運動方向相反的,它的大小等於P·sinα,對運動起阻礙作用。所以,當F=2P·sinα時劈才能前進,因而P與F大小之比等於劈面的長度和劈背的厚度之比,因此劈背愈薄,劈面愈長,就愈省力。劈的用途很多,可用來做切削工具,如刀、斧、刨、鑿、鏟等;可用它緊固物體,如鞋楦榫頭,斧柄等加楔子使之漲緊;還可用來起重,如修房時換柱起梁等。
Ⅸ 杠桿、定滑輪、動滑輪、滑輪組、斜面各有什麼作用
杠桿是分省力杠桿(動力臂大於阻力臂)和費力杠桿(阻力臂大於動力臂)
定滑輪不省力,但改變力的方向(不省功)
動畫輪省力,但不改變力的方向也費距離(不省功)
滑輪組結合了定滑輪和動滑輪的優點即改變力方向也省力,但也費距離,省力的多少要看繞在動滑輪的繩子段數多少(不省功)
斜面是一種省力機械,在生活中運用十分廣闊,如:貨櫃車裝貨時利用斜面將貨物運上貨櫃箱,省力的多少要看斜面的長度.