❶ 杠桿平衡的原理是什麼
要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。
式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。因此要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如果想要省距離,就應該用動力臂比阻力臂短的杠桿。
(1)相平衡的杠桿原理擴展閱讀:
杠桿原理基本有3種類型,第一類的杠桿例子是天平、剪刀、鉗子等,第二類杠桿的例子是開瓶器、胡桃夾,第三類杠桿如錘子、鑷子等。
杠桿分為3種杠桿。第一種是省力的杠桿,如:開瓶器等。第二種是費力的杠桿,如:鑷子等。第三種是既不省力也不費力的杠桿,如:天平、釣魚竿等。
還有工程上的吊車,滑輪等。
❷ 杠桿平衡原理公式
要使杠桿平衡,作用在杠桿上的兩個力(用力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1
L1=F2
L2。
❸ 杠桿平衡的原理
杠桿原理就是「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(動力版和阻力)權的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中。
F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
(3)相平衡的杠桿原理擴展閱讀:
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿,如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。
杠桿原理基本有3種類型,第一類的杠桿例子是天平、剪刀、鉗子等,第二類杠桿的例子是開瓶器、胡桃夾,第三類杠桿如錘子、鑷子等。 杠桿分為3種杠桿。第一種是省力的杠桿,如:開瓶器等。第二種是費力的杠桿,如:鑷子等。第三種是既不省力也不費力的杠桿,如天平等。
參考資料來源:網路-杠桿平衡
❹ 什麼杠桿平衡原理
動力臂*動力=阻力臂*阻力
❺ 杠桿的原理的原理是什麼
要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。專即:動力×動力臂=阻力屬×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。因此要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如果想要省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。
當杠桿的動力點到支點的距離大於阻力點到支點的距離時是省力杠桿,反之則是費力杠桿。杠桿可分為省力杠桿、費力杠桿和等臂杠桿。
杠桿原理的應用:
1、省力杠桿:L1>L2, F1<f2 ,省力、費距離。如拔釘子用的羊角錘、鍘刀,瓶蓋扳子等。
2、費力杠桿: L1<L2, F1>F2,費力、省距離。如釣魚竿、鑷子等。
3、等臂杠桿: L1=L2, F1=F2,既不省力也不費力,又不多移動距離。如天平、定滑輪等。
❻ 杠桿平衡條件也就是 發現的杠桿原理
杠桿的平衡條件:
動力×動力臂=阻力×阻力臂
F1L1=F2L2
阿基米德
是杠桿原理的發現者.著名言論:給我一個支點……
❼ 杠桿原理及公式
將杠桿原理看作以支點為中心的旋轉運動,就比較容易理解了。動力點或專阻力點的移動距離屬是由以支點為中心的圓的半徑決定的。半徑越長,這個點移動的距離就越長,因為這個點就得沿半徑更長的圓移動了。
距離變化的同時,也伴隨著力的增減。這是因為單純的杠桿原理是通過以下公式成立的:作用於動力點的力×動力點移動的距離=作用於阻力點的力×阻力點移動的距離。(力×力作用的距離)在物理學中叫做「功」,即人做的功和物體被做的功是相等的(能量守恆定律)。
(7)相平衡的杠桿原理擴展閱讀
在杠桿原理中,我們把杠桿固定的旋轉點稱為「支點」。要想舉起重物,就要把支點置於盡量靠近物體的地方。
假設人施加力的點(動力點)與支點之間的距離達到支點與使物體移動的點(阻力點)之間距離的5倍。那麼,要想撬起地球儀,只需要用地球儀1/5重量的力按壓木板即可。
剪刀、起子、鑷子、筷子、鉗子、桿秤......這些工具都用到了「杠桿原理」。利用杠桿原理,我們可以用很小的力量撬起很重的物體,也可以把短距離移動放大為長距離移動。正因如此,杠桿原理在生活中的應用十分廣泛。
❽ 用簡單的話解釋一下杠桿原理,最好有圖解。。
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。內要使杠容桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。
如下圖所示為杠桿原理的最好解釋。
❾ 化學里的杠桿原理怎麼來的該怎麼用 請把兩個問題分開講解,
在二組分系統相圖的應用中用杠桿原理計算兩相的組成.
已知兩組分A與B混合後的版A的摩權爾分數xA,以及混合後兩相中A與B總物質的量分別為n1與n2..T--x圖中的梭形區兩相平衡,在T軸上畫一條水平線(即給定一個溫度),水平線與梭形區相交於兩點(設為D點與E點),可以就此讀出組分A在兩相中的摩爾分數(即X1與x2),也由xA畫一條豎直線與DE相交於一點C.
就組分A來說,有以下的公式成立:n1(xA-x1)=n2(x2-xA)或者n1×CD=n2×DE
就是把圖中的DE比作一個以C點為支點的杠桿,一相的物質的量乘以CD等於另一相的物質的量乘以CE,這個關系就是杠桿原理
我沒有寫推理的過程,推理的原理就是混合前後各組分自己的物質的量不變,有興趣可以看看物理化學相平衡那一章.