導航:首頁 > 匯率傭金 > 匯率動態面板數據模型

匯率動態面板數據模型

發布時間:2021-06-26 08:36:07

Ⅰ 面板數據模型可以解決哪些經濟問題

步驟一:分析數據的平穩性(單位根檢驗)
按照正規程序,面板數據模型在回歸前需檢驗數據的平穩性。李子奈曾指出,一些非平穩的經濟時間序列往往表現出共同的變化趨勢,而這些序列間本身不一定有直接的關聯,此時,對這些數據進行回歸,盡管有較高的R平方,但其結果是沒有任何實際意義的。這種情況稱為稱為虛假回歸或偽回歸(spurious regression)。他認為平穩的真正含義是:一個時間序列剔除了不變的均值(可視為截距)和時間趨勢以後,剩餘的序列為零均值,同方差,即白雜訊。因此單位根檢驗時有三種檢驗模式:既有趨勢又有截距、只有截距、以上都無。因此為了避免偽回歸,確保估計結果的有效性,我們必須對各面板序列的平穩性進行檢驗。而檢驗數據平穩性最常用的辦法就是單位根檢驗。首先,我們可以先對面板序列繪制時序圖,以粗略觀測時序圖中由各個觀測值描出代表變數的折線是否含有趨勢項和(或)截距項,從而為進一步的單位根檢驗的檢驗模式做准備。單位根檢驗方法的文獻綜述:在非平穩的面板數據漸進過程中,Levin andLin(1993) 很早就發現這些估計量的極限分布是高斯分布,這些結果也被應用在有異方差的面板數據中,並建立了對面板單位根進行檢驗的早期版本。後來經過Levin et al. (2002)的改進,提出了檢驗面板單位根的LLC 法。Levin et al. (2002) 指出,該方法允許不同截距和時間趨勢,異方差和高階序列相關,適合於中等維度(時間序列介於25~250 之間,截面數介於10~250 之間) 的面板單位根檢驗。Im et al. (1997) 還提出了檢驗面板單位根的IPS 法,但Breitung(2000) 發現IPS 法對限定性趨勢的設定極為敏感,並提出了面板單位根檢驗的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板單位根檢驗方法。
由上述綜述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5種方法進行面板單位根檢驗。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分別指Levin, Lin & Chu t* 統計量、Breitung t 統計量、lm Pesaran & Shin W 統計量、ADF- Fisher Chi-square統計量、PP-Fisher Chi-square統計量、Hadri Z統計量,並且Levin, Lin & Chu t* 統計量、Breitung t統計量的原假設為存在普通的單位根過程,lm Pesaran & Shin W 統計量、ADF- Fisher Chi-square統計量、PP-Fisher Chi-square統計量的原假設為存在有效的單位根過程, Hadri Z統計量的檢驗原假設為不存在普通的單位根過程。有時,為了方便,只採用兩種面板數據單位根檢驗方法,即相同根單位根檢驗LLC(Levin-Lin- Chu)檢驗和不同根單位根檢驗Fisher-ADF檢驗(註:對普通序列(非面板序列)的單位根檢驗方法則常用ADF檢驗),如果在兩種檢驗中均拒絕存在單位根的原假設則我們說此序列是平穩的,反之則不平穩。如果我們以T(trend)代表序列含趨勢項,以I(intercept)代表序列含截距項,T&I代表兩項都含,N(none)代表兩項都不含,那麼我們可以基於前面時序圖得出的結論,在單位根檢驗中選擇相應檢驗模式。但基於時序圖得出的結論畢竟是粗略的,嚴格來說,那些檢驗結構均需一一檢驗。具體操作可以參照李子奈的說法:ADF檢驗是通過三個模型來完成,首先從含有截距和趨勢項的模型開始,再檢驗只含截距項的模型,最後檢驗二者都不含的模型。並且認為,只有三個模型的檢驗結果都不能拒絕原假設時,我們才認為時間序列是非平穩的,而只要其中有一個模型的檢驗結果拒絕了零假設,就可認為時間序列是平穩的。此外,單位根檢驗一般是先從水平(level)序列開始檢驗起,如果存在單位根,則對該序列進行一階差分後繼續檢驗,若仍存在單位根,則進行二階甚至高階差分後檢驗,直至序列平穩為止。我們記I(0)為零階單整,I(1)為一階單整,依次類推,I(N)為N階單整。
步驟二:協整檢驗或模型修正
情況一:如果基於單位根檢驗的結果發現變數之間是同階單整的,那麼我們可以進行協整檢驗。協整檢驗是考察變數間長期均衡關系的方法。所謂的協整是指若兩個或多個非平穩的變數序列,其某個線性組合後的序列呈平穩性。此時我們稱這些變數序列間有協整關系存在。因此協整的要求或前提是同階單整。但也有如下的寬限說法:如果變數個數多於兩個,即解釋變數個數多於一個,被解釋變數的單整階數不能高於任何一個解釋變數的單整階數。另當解釋變數的單整階數高於被解釋變數的單整階數時,則必須至少有兩個解釋變數的單整階數高於被解釋變數的單整階數。如果只含有兩個解釋變數,則兩個變數的單整階數應該相同。也就是說,單整階數不同的兩個或以上的非平穩序列如果一起進行協整檢驗,必然有某些低階單整的,即波動相對高階序列的波動甚微弱(有可能波動幅度也不同)的序列,對協整結果的影響不大,因此包不包含的重要性不大。而相對處於最高階序列,由於其波動較大,對回歸殘差的平穩性帶來極大的影響,所以如果協整是包含有某些高階單整序列的話(但如果所有變數都是階數相同的高階,此時也被稱作同階單整,這樣的話另當別論),一定不能將其納入協整檢驗。
協整檢驗方法的文獻綜述:(1)Kao(1999)、Kao and Chiang(2000)利用推廣的DF和ADF檢驗提出了檢驗面板協整的方法,這種方法零假設是沒有協整關系,並且利用靜態面板回歸的殘差來構建統計量。(2)Pedron(1999)在零假設是在動態多元面板回歸中沒有協整關系的條件下給出了七種基於殘差的面板協整檢驗方法。和Kao的方法不同的是,Pedroni的檢驗方法允許異質面板的存在。(3)Larsson et al(2001)發展了基於Johansen(1995)向量自回歸的似然檢驗的面板協整檢驗方法,這種檢驗的方法是檢驗變數存在共同的協整的秩。我們主要採用的是Pedroni、Kao、Johansen的方法。通過了協整檢驗,說明變數之間存在著長期穩定的均衡關系,其方程回歸殘差是平穩的。因此可以在此基礎上直接對原方程進行回歸,此時的回歸結果是較精確的。這時,我們或許還想進一步對面板數據做格蘭傑因果檢驗(因果檢驗的前提是變數協整)。但如果變數之間不是協整(即非同階單整)的話,是不能進行格蘭傑因果檢驗的,不過此時可以先對數據進行處理。引用張曉峒的原話,「如果y和x不同階,不能做格蘭傑因果檢驗,但可通過差分序列或其他處理得到同階單整序列,並且要看它們此時有無經濟意義。」 下面簡要介紹一下因果檢驗的含義:這里的因果關系是從統計角度而言的,即是通過概率或者分布函數的角度體現出來的:在所有其它事件的發生情況固定不變的條件下,如果一個事件X的發生與不發生對於另一個事件Y的發生的概率(如果通過事件定義了隨機變數那麼也可以說分布函數)有影響,並且這兩個事件在時間上又有先後順序(A前B後),那麼我們便可以說X是Y的原因。考慮最簡單的形式,Granger檢驗是運用F-統計量來檢驗X的滯後值是否顯著影響Y(在統計的意義下,且已經綜合考慮了Y的滯後值;如果影響不顯著,那麼稱X不是Y的「Granger原因」(Granger cause);如果影響顯著,那麼稱X是Y的「Granger原因」。同樣,這也可以用於檢驗Y是X的「原因」,檢驗Y的滯後值是否影響X(已經考慮了X 的滯後對X自身的影響)。 Eviews好像沒有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。說明Eviews是無法對面板數據序列做格蘭傑檢驗的,格蘭傑檢驗只能針對序列組做。也就是說格蘭傑因果檢驗在Eviews中是針對普通的序列對(pairwise)而言的。你如果想對面板數據中的某些合成序列做因果檢驗的話,不妨先導出相關序列到一個組中(POOL窗口中的Proc/Make Group),再來試試。
情況二:如果如果基於單位根檢驗的結果發現變數之間是非同階單整的,即面板數據中有些序列平穩而有些序列不平穩,此時不能進行協整檢驗與直接對原序列進行回歸。但此時也不要著急,我們可以在保持變數經濟意義的前提下,對我們前面提出的模型進行修正,以消除數據不平穩對回歸造成的不利影響。如差分某些序列,將基於時間頻度的絕對數據變成時間頻度下的變動數據或增長率數據。此時的研究轉向新的模型,但要保證模型具有經濟意義。因此一般不要對原序列進行二階差分,因為對變動數據或增長率數據再進行差分,我們不好對其冠以經濟解釋。難道你稱其為變動率的變動率?
步驟三:面板模型的選擇與回歸
面板數據模型的選擇通常有三種形式: 一種是混合估計模型(Pooled Regression Model)。如果從時間上看,不同個體之間不存在顯著性差異;從截面上看,不同截面之間也不存在顯著性差異,那麼就可以直接把面板數據混合在一起用普通最小二乘法(OLS)估計參數。一種是固定效應模型(Fixed Effects Regression Model)。如果對於不同的截面或不同的時間序列,模型的截距不同,則可以採用在模型中添加虛擬變數的方法估計回歸參數。一種是隨機效應模型(Random Effects Regression Model)。如果固定效應模型中的截距項包括了截面隨機誤差項和時間隨機誤差項的平均效應,並且這兩個隨機誤差項都服從正態分布,則固定效應模型就變成了隨機效應模型。在面板數據模型形式的選擇方法上,我們經常採用F檢驗決定選用混合模型還是固定效應模型,然後用Hausman檢驗確定應該建立隨機效應模型還是固定效應模型。檢驗完畢後,我們也就知道該選用哪種模型了,然後我們就開始回歸:在回歸的時候,權數可以選擇按截面加權(cross- section weights)的方式,對於橫截面個數大於時序個數的情況更應如此,表示允許不同的截面存在異方差現象。估計方法採用PCSE(Panel Corrected Standard Errors,面板校正標准誤)方法。Beck和Katz(1995)引入的PCSE估計方法是面板數據模型估計方法的一個創新,可以有效的處理復雜的面板誤差結構,如同步相關,異方差,序列相關等,在樣本量不夠大時尤為有用。

Ⅱ 請教大俠,關於GMM動態面板數據模型的廣義矩估計

主要是做動態面板數據的兩個重要檢驗。Sargan用來檢驗在廣義矩估計(gmm)中是否存在過度限制約束問題,Arellano-Bond 用來檢驗誤差項是否存在序列相關問題,如果存在L階序列相關,則差分方程的工具變數必須選取滯後L+1。

Ⅲ 動態面板數據模型可以用固定效應估計嗎

好像做動態面板模型應該要求樣本觀察值的個數至少有4期。至於內生變數的設定要根據論文的理論分析來設定,還有內生變數的個數問題必須考慮,也計算內生變數的識別問題。
動態面板估計的命令很多,我都用外加xtbond2,官方也有命令。

Ⅳ 計量經濟里的動態面板模型的主要思想是什麼啊

所謂動態面板數據模型,是指通過在靜態面板數據模型中引入滯後被解釋變數以反映動態滯後效應的模型。這種模型的特殊性在於被解釋變數的動態滯後項與隨機誤差組成部分中的個體效應相關,從而造成估計的內生性。

計量經濟學的基礎是一整套建立在數理統計理論上的計量方法,屬於計量經濟學的「硬體」,計量經濟學的主要用途或目的主要有兩個方面:

理論檢驗。這是計量經濟學用途最為主要的和可靠的方面。這也是計量經濟學本身的一個主要內容。

預測應用。從理論研究和方法的最終目的看,預測(包括政策評價)當然是計量經濟學最終任務,必須注意學習和了解,但其預測的可靠性或有效性是我們應十分注意的。

(4)匯率動態面板數據模型擴展閱讀:

研究對象發生了較大變化。即從研究確定性問題轉向非確定性問題,其對象的性質和意義將發生巨大的變化。因此,在方法的思路上、方法的性質上和方法的結果上,都將出現全新的變化。

研究方法發生根本變化。計量經濟學方法的基礎是概率論和數理統計,是一種新的數學形式。學習中要十分注意其基本概念和方法思路的理解和把握,要充分認識其方法與其它數學方法的根本不同之處。

Ⅳ 動態面板數據模型中onestep和twostep的區別

類比2SLS 應該是第一步利用IV求出內生變數的擬合值,然後第二步用擬合值替代原有的內生變數進行回歸

Ⅵ 面板數據模型的定義和操作方法

(第3組 宏現經濟增長與發展,6686個字元)
中國能源、環境與經濟增長基於面板數據的計量分析
王洲洋
(河北經貿大學數統學院,石家莊,050061)
摘 要
本文運用面板數據的分析方法對我國各地區的能源消費、環境污染與經濟增長進行了實證研究。研究表明:能源消費、環境污染與經濟增長變數均為不平穩變數,但它們之間存在著長期的協整關系。如果能源供應每增加1%,GDP就會增加0.269%;環境污染每減少1%,GDP就能增加0.043%。
關鍵詞 經濟增長 面板協整檢驗 Hausman檢驗
Abstract
This paper assesses the relationship among the energy consumption, environment pollution and economic growth in all the regions of China by the method of Panel Data. Research results indicate that the energy consumption, environment pollution and economic growth are not balanced variables,but they have the Co-integration relations in a long run.If the energy supply increases 1%,the economic growth will increase 0.269%;And if the environment pollution decreases 1%,the economic growth will increase 0.043%.
Key words : economical growth Panel data Co-integration Test Hausman-test
一、引言
自從進入工業化時期以來,世界上許多國家為了追求經濟的快速增長和物質產品的極大豐富,對能源進行了大規模的開發和利用,而能源的逐漸枯竭及能源帶來的生態環境問題,都將嚴重阻礙經濟的發展。環境作為經濟、社會發展的物質條件,作為經濟發展的基礎,既可以直接地促進經濟的發展,也可能成為經濟的發展的阻力,環境污染已成為危害人們健康、制約經濟和社會發展的重要因素之一。如今能源與環境問題已成為制約一個國家經濟增長的瓶頸,而這種現象在我國尤為突出。不斷開發新能源,開發可再生能源,提高能源利用效率,保護環境將對我國經濟發展起到重要作用。黨的十七大報告再次強調要加強能源資源節約和生態環境保護,並指出,加強能源資源節約和環境環境保護,增強可持續發展能力,堅持節約資源和保護環境的基本國策,關系人民群眾切身利益和中華民族生存發展。因此,對於我國能源消費、環境保護和經濟發展的關系研究具有十分重要的理論價值和現實意義。
近年來我國的能源、環境問題已成為被關注的熱點,許多學者從不同的角度進行了大量的分析,得出了許多有用的啟示。如林伯強[1](2003)通過協整分析考察了我國能源需求與經濟增長的關系;王逢寶[2]等(2006)運用線性回歸的方法對區域能源、環境與經濟增長進行了研究。馮秀[3](2006)則探討了我國能源利用現狀及能源、環境與經濟增之長的關系。林師模等[4](2006)研究了能源技術創新對我國經濟,環境與能源之間的關系。目前大多的文獻是用時間序列的數據,或是從總量的角度來分析全國或某個地區的能源消費、環境污染與經濟增長之間的關系,但由於我國幅員遼闊,各地區間的經濟、能源消費與環境方面都存在著巨大的差異,因而不能把各個地區的經濟、能源消費與環境污染視為一個同質的整體,且運用時間序列數據往往很難解釋它們間的內在聯系。
本文使用我國省級的面板數據,運用面板數據的分析方法對我國各地區的能源消費、環境污染與經濟增長進行實證分析,從而來揭示我國能源消費、環境污染與經濟增長之間的內在聯系。
二、研究方法
面板數據分析方法是最近幾十年來發展起來的新的統計方法,面板數據可以克服時間序列分析受多重共線性的困擾,能夠提供更多的信息、更多的變化、更少共線性、更多的自由度和更高的估計效率,而面板數據的單位根檢驗和協整分析是當前最前沿的領域之一。在本文的研究中,我們首先運用面板數據的單位根檢驗與協整檢驗來考察能源消費、環境污染與經濟增長之間的長期關系,然後建立計量模型來量化它們之間的內在聯系。
面板數據的單位根檢驗的方法主要有 Levin,Lin and CHU(2002)提出的LLC檢驗方法[5]。Im,Pesearn,Shin(2003)提出的IPS檢驗[6] , Maddala和Wu(1999),Choi(2001)提出的ADF和PP檢驗[7]等。面板數據的協整檢驗的方法主要有Pedroni[8] (1999,2004)和Kao[9](1999)提出的檢驗方法,這兩種檢驗方法的原假設均為不存在協整關系,從面板數據中得到殘差統計量進行檢驗。Luciano(2003)中運用Monte Carlo模擬[10]對協整檢驗的幾種方法進行比較,說明在T較小(大)時,Kao檢驗比Pedroni檢驗更高(低)的功效。具體面板數據單位根檢驗和協整檢驗的方法見參考文獻[5-10]。
三、實證分析
1.指標選取和數據來源
經濟增長:本文使用地區生產總值 ,以1999年為基期,根據各地區生產總值指數折算成實際 ,單位:億元。
能源消費:考慮到近年來我國能源消費總量中,煤炭和石油供需存在著明顯低估,而電力消費數據相當准確。因此使用電力消費更能准確反映能源消費與經濟增長之間的內在聯系(林伯強,2003)。所以本文使用各地區電力消費量 作為能源消費量,單位:億千瓦小時。
環境污染:污染物以氣休、液體、固體形態存在,本文選取工業廢水排放量 作為環境污染的量化指標,單位:萬噸。
本文採用1999-2006年全國30個省(直轄市,自治區)的地區生產總值 、電力消費量 和工業廢水排放量 的數據構建面板數據集。30個省(直轄市,自治區)包括北京、天津、河北、遼寧、上海、江蘇、浙江、福建、山東、廣東、山西、內蒙古、吉林、黑龍江、安徽、江西、河南、湖北、湖南、海南、廣西、重慶、四川、貴州、雲南、陝西、西藏、甘肅、青海、寧夏、新疆,由於西藏數據不全故不包括在內。數據來源於《中國統計年鑒2000-2007》。為了消除變數間可能存在的異方差,本文先對 、 和 進行自然對數變換。
記 , , .
2.面板數據的單位根檢驗
為了避免單一方法可能存在的缺陷,本文使用LLC檢驗、IPS檢驗、Fisher-ADF檢驗和Fisher-PP檢驗四種方法來進行面板數據的單位根檢驗。利用Eviews 6.0軟體(下同),檢驗結果見表1。
表1 , , 的面板單位根檢驗
變 量 LLC p值 IPS p值 Fisher-ADF p值 Fisher-PP p值

4.21 1.00 5.78 1.00 16.95 1.00 7.67 1.00

6.35 1.00 10.24 1.00 5.37 1.00 9.45 1.00

-2.91 0.0018 1.26 0.89 56.97 0.058 90,56 0.0066

-14.89 0.00 -3.17 0.0008 103.88 0.0004 86.42 0.0144

-21.99 0.00 -5.80 0.00 143.77 0.00 146.44 0.00

-12.21 0.00 -4.52 0.00 135.51 0.00 184.48 0.00

從表1可以看出, , 在5%水平不平穩,經一階差分後 , 均在5%水平拒絕原假設, 的LLC檢驗在5%水平不顯著,但其它三種檢驗方法均顯著, 的四種檢驗方法均在5%水平下拒絕原假,所以我們認為 , , 均為一階差分平穩變數。
3.面板數據的協整檢驗
對 , , 的協整關系進行Pedroni協整檢驗和Kao協整檢驗。其檢驗結果見表2和表3。
表2 Pedroni協整檢驗
統計量 p值
Panel v統計量 -1.145 0.0056
Panel rho統計量 2.588 0.0277
Panel PP統計量 -1.543 0.0013
Panel ADF統計量 -3.811 0.0000
Group rho統計量 5.088 0.0000
Group PP統計量 -2.559 0.0151
Group ADF統計量 -6.985 0.0000

表3 Kao協整檢驗
t統計量 p值
ADF -5.873 0.0000

由表2和表3的面板協整檢驗結果可知: Pedroni協整檢驗的七個統計量與Kao協整檢驗的ADF統計量均在5%顯著性水平下拒絕原假設,表明 , , 之間存在顯著的協整關系。
4.模型檢驗
(1) 固定效應模型顯著性檢驗
固定效應模型顯著性檢驗是檢驗模型中固定效應系數 是否有差異,即原假設為 。其檢驗結果如表4所示:
表4 固定效應模型的顯著性檢驗
固定效應顯著性檢驗 統計量 自由度 p值
Cross-section F 374.484 (29,208) 0.0000
Cross-section Chi-square 953.827 29 0.0000

由表4固定效應模型的顯著性檢驗結果可知,p值小於5%,因此拒絕固定效應系數 相同的原假設,所以我們選取固定效應模型比較合適。
(2)Hausman檢驗
Hausman檢驗的原假設是隨機效應模型的系數與固定效應模型的系數沒有差別,如果接受原假設,表明應選擇隨機效應模型,否則就應該選擇固定效應模型。檢驗結果在表4和表5中列出。
表5 Hausman檢驗
Chi-Sq. 統計量 Chi-Sq. Statistic自由度 p值
Cross-section random 117.766 2 0.000

表6 固定效應與隨機效應檢驗比較
變數 固定效應 隨機效應 兩種效應方差之差 p值

0.269 0.279 0.000002 0.0000

-0.0434 -0.017 0.000007 0.0000

從表5中Hausman檢驗結果與表6中固定效應與隨機效應檢驗比較可以看出,p值在5%水平下拒絕原假設,模型中被忽視的效應與模型中的兩個解釋變數相關,所以我們認為固定效應模型是更好的選擇。
5.模型的估計
根據上面的分析我們採用固定效應模型對模型進行估計,模型估計結果如下式所示:
(1)
(44.647) (20.341) (-3.097)
[0.0000] [0.0000] [0.0022]
小括弧中是t統計量,中括弧中是相應的p值。
模型調整後的 為0.996,F值為2484.3,殘差平方和為0.599,各個系數均通過t檢驗,模型擬合的相當不錯。
固定效應系數 見表7所示:
表7各地區的固定效應系數
地區

地區

地區

北京 0.207 浙江 0.792 海南 -1.044
天津 -0.268 安徽 0.283 重慶 -0.222
河北 0.582 福建 0.425 四川 0.440
山西 -0.351 江西 -0.00158 貴州 -0.808
內蒙古 -0.454 山東 1.034 雲南 -0.121
遼寧 0.473 河南 0.623 陝西 -0.228
吉林 -0.138 湖北 0.429 甘肅 -0.815
黑龍江 0.251 湖南 0.424 青海 -1.962
上海 0.555 廣東 1.139 寧夏 -1.908
江蘇 1.058 廣西 -0.0147 新疆 -0.380

式(1)表明,GDP與能源消費、環境污染之間存在著顯著的長期均衡關系,從全國的平均水平來看,能源消費的彈性系數是0.269,也就是能源供應每增加1%,GDP就會增加0.269%;環境污染的彈性系數是-0.043,即環境污染每減少1%,GDP就能增加0.043%,這說明GDP與環境污染存在著反向的關系,與我們普遍認為的保護環境能促進經濟健康快速發展的觀點相一致。
四、主要結論
本文通過採用比較前沿的面板單位根檢驗、面板協整檢驗等分析方法,對1999年到2006年我國能源消費、環境污染與經濟增長的省級面板數據進行了實證研究。研究表明:我國能源消費、環境污染與經濟增長均為不平穩過程,這主要是因為我國各地區由於政策、環境等多種原因,使得各地區間存在著很大的差異,所以不同的地區表現出非一致性,但不同地區的能源消費、環境污染與經濟增長之間都存在著顯著的協整關系。能源和環境作為經濟持續增長的要素,對我國經濟發展有著重大的影響作用。能源供應與經濟增長存在著正向的關系,經濟增長對能源有很強的信賴性,而環境污染與經濟增長存在著反向的關系,環境污染程度的加劇將會嚴重阻礙經濟的增長。從全國平均水平來看,能源供應每增加1%,GDP將增加0.269%;環境污染每減少1%,GDP將增加0.043%。因此堅持節約能源、提高能源使用效率和保護環境將對我國經濟的持續、快速、健康發展具有極其重要的意義。
需要指出的是,由於數據方面的原因,本文使用的面板數據時間跨度並不長(1999-2006),得到的長期關系有可能受到質疑 (DimitrisK.Christopoulos and Efthvmios G.Tsionas,2004) [11]。本文使用各地區電力消費量來代替能源消費總量,工業廢水排放量來反映環境污染程度,但它們都只反映了能源消費、環境污染程度的一個方面,所以指標的選取並不全面,應該將煤、石油等能源的消費以及大氣污染、固體廢棄物污染等全部納入指標體系,這樣指標體系才更加全面、更加合理,這有待我們今後更加深入的研究。

參考文獻:
[1]林伯強:《電力消費與中國經濟增長:基於生產函數的研究》[J],《管理世界》2003年第11期。
[2]王逢寶、張磊、秦貞蘭:《能源、環境與區域經濟增長的計量分析》[J],《天津財貿管理幹部學院學報》2006年第3期。
[3]馮秀、丁勇:《可持續發展下中國的能源、環境與經濟》[J],《北方經濟》2006年第2期。
[4]林師模、蘇漢邦、林幸樺:《能源技術創新對經濟、能源及環境》的影響[J]《東莞理工學院學報》2006年第4期。
[5]Levin.A.,C.F.Lin Unit Root Tests in Panel Data:Asymptotic and Finite Sample Properties[C].UC San Diego.Working Paper,1992.92-93.
[6]Im K.S.,M.H.Pesaran and Y.Shin.Testing for Unit Roots in Heterogeneous Panels[J].Journal of Econometrics 2003,115:53-74.
[7]Maddala G.S.,Wu Shaowen,1999.Acomparative Study of Unit Root Tests with Panel Data and a New Simple Test [J].Oxford Bulletin of Economics and Statistics,1999,61:631-652.
[8]Luciano,G..On the Power of Panel Cointegration Tests:A Monte Carlo Comparison[J].Economics Letters,2003,80:105-111.
[9]Pedroni,P.Critical Value for Cointegration Tests in Heterogeneous Panels with Multiple Regressors[J].Oxford Bulletin of Economics and Statistics,1999,61:653-678.
[10]Kao,C,Spurious Regression and Resial-based Tests for Cointetration in Panel Data[J].Journal of Econometrics,1999,90:1-44.
[11]Dimitris K. Christopoulos,Efthymios G.Tsionas,2004,Financial development and economic growth: evidence from panel.

Ⅶ 動態面板數據模型中的年份虛擬變數是怎麼設定

不一定。動態面板不僅僅針對於被解釋變數受到滯後項的影響,還有別的因素。建議去看Roodman (2009):How to do xtabond2: An introction to difference and system GMM in Stata

Ⅷ 什麼是動態面板數據

面板數據,即Panel Data,也叫「平行數據」,是指在時間序列上取多個截面,在這些截面上同時選取樣本觀測值所構成的樣本數據。或者說他是一個m*n的數據矩陣,記載的是n個時間節點上,m個對象的某一數據指標。

其有時間序列和截面兩個維度,當這類數據按兩個維度排列時,是排在一個平面上,與只有一個維度的數據排在一條線上有著明顯的不同,整個表格像是一個面板,所以把panel data譯作「面板數據」。

但是,如果從其內在含義上講,把panel data譯為「時間序列—截面數據」 更能揭示這類數據的本質上的特點。也有譯作「平行數據」或「TS-CS數據(Time Series - Cross Section)」。



(8)匯率動態面板數據模型擴展閱讀:

研究方法

面板數據分析方法是最近幾十年來發展起來的新的統計方法,面板數據可以克服時間序列分析受多重共線性的困擾,能夠提供更多的信息、更多的變化、更少共線性、更多的自由度和更高的估計效率,而面板數據的單位根檢驗和協整分析是當前最前沿的領域之一。

面板數據的單位根檢驗的方法主要有 Levin,Lin and CHU(2002)提出的LLC檢驗方法。Im,Pesearn,Shin(2003)提出的IPS檢驗 , Maddala和Wu(1999),Choi(2001)提出的ADF和PP檢驗等。

面板數據的協整檢驗的方法主要有Pedroni[8] (1999,2004)和Kao[9](1999)提出的檢驗方法,這兩種檢驗方法的原假設均為不存在協整關系,從面板數據中得到殘差統計量進行檢驗。

Luciano(2003)中運用Monte Carlo模擬[10]對協整檢驗的幾種方法進行比較,說明在T較小(大)時,Kao檢驗比Pedroni檢驗更高(低)的功效。

閱讀全文

與匯率動態面板數據模型相關的資料

熱點內容
融資擔保公司屬於金融服務業嗎 瀏覽:852
山東中泰證券集團 瀏覽:179
天獅集團自費去法國 瀏覽:738
海通證券吳中路 瀏覽:85
期貨數學模型演算法 瀏覽:999
股東會公司權力機構 瀏覽:227
完成c輪融資5家p2p 瀏覽:879
外管局為什麼限制外匯保證金業務 瀏覽:872
定期投資理財可以賺到錢嗎 瀏覽:584
湖南住房公積金貸款政策 瀏覽:392
支付寶里的理財銀行倒閉了賠嗎 瀏覽:757
目前哪個銀行理財 瀏覽:556
做外盤期貨的人多嗎 瀏覽:228
雙黃公司股票 瀏覽:663
境外炒外匯出金 瀏覽:143
理財產品都含基金嗎 瀏覽:750
控股信託的銀行 瀏覽:124
北京大通電子交易所 瀏覽:268
成都文德證券 瀏覽:933
洛陽銀行鄭州融資 瀏覽:415