Ⅰ 杠桿原理的分析
中把在力的作用下可以圍繞固定點轉動的堅硬物體叫做杠桿。
五要素:動力,阻力,
,
和
1、
:杠桿的固定點,通常用O表示。
2、動力:驅使杠桿轉動的力,用F1表示。
3、阻力:阻礙杠桿轉動的力,用F2表示。
4、
:
到動力作用線的垂直距離叫
,用L1表示。
5、
:支點到阻力作用線的垂直距離叫
,用L2表示。
亦稱「
條件」。要使
,作用在杠桿上的兩個力(用力點、支點和
)的大小跟它們的
成反比。動力×動
=阻力×阻
,用
表示為F1· l1=F2·l2。式中,F1表示動力,l1表示動力臂,F2表示阻力,l2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
Ⅱ 杠桿原理
杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(動力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1• L1=F2•L2。式中,F表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:支點到受力點距離(力矩) * 受力 = 支點到施力點距離(力臂) * 施力,這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (力臂 > 力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 > 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,我就能把地球挪動!"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
Ⅲ 杠桿示意圖原理
若兩個力方向相同,則合力大小等於這兩個力的大小之和
方向跟兩個力的方向相同。
若兩個力方向相反,則合力大小等於這兩個力的大小之差
方向跟較大的那個力方向相同
口訣:同向相加,異向相減,方向隨大
使這個嗎?
Ⅳ 杠桿原理解釋的是什麼意思能不能具體說一下
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。其中公式這樣寫:支點到受力點距離(力矩)*受力=支點到施力點距離(力臂)*施力,這樣就是一個杠桿。杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿(力臂>力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機(力矩>力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,我就能把地球挪動!"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
Ⅳ 什麼是杠桿原理
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡專條件」。要使杠屬桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。
即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
(5)杠桿原理建築結構擴展閱讀:
杠桿定理:
1、在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡。
2、在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾。
3、在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下傾。
4、一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替。
5、相似圖形的重心以相似的方式分布。
Ⅵ 杠桿原理是什麼
初中物理學中把一根在力的作用下可繞固定點轉動的硬棒叫做杠桿。
Ⅶ 杠桿原理及公式
杠桿原理為了平衡杠桿,作用在杠桿上的兩個力矩(力與力臂的乘積)的大小必須相等。
公式:動力×動力臂=阻力×阻力臂,用代數式表示為F₁·L₁=F₂·L₂。式中,F₁表示動力,L₁表示動力臂,F₂表示阻力,L₂表示阻力臂。
使用杠桿時,為了省力,應該使用動力臂比阻力臂長的杠桿;如果想節省距離,應該使用動力臂比阻力臂短的杠桿。所以杠桿可以節省精力和距離。然而,如果想省力,必須移動更多的距離;如果想移動更少的距離,必須花費更多的努力。要想又省力而又少移動距離,是不可能實現的。
(7)杠桿原理建築結構擴展閱讀:
杠桿原理的分類:
1、省力杠桿
L1>L2,F1<F2,省力、費距離。
如拔釘子用的羊角錘、鍘刀,開瓶器,軋刀,動滑輪,手推車 剪鐵皮的剪刀及剪鋼筋用的剪刀等。
2、費力杠桿
L1<L2,F1>F2,費力、省距離。
如釣魚竿、鑷子,筷子,船槳裁縫用的剪刀 理發師用的剪刀等。
3、等臂杠桿
L1=L2,F1=F2,既不省力也不費力,又不多移動距離,
如天平、定滑輪等。
Ⅷ 杠桿原理是怎樣做出的
原理簡介
古希臘科學家阿基米德有這樣一句流傳很久的名言:「給我一個支點,我就能撬起整個地球!」這句話有著阿基米德嚴格的科學根據。(阿基米德是古希臘著名的科學家,許多問題在阿基米德的頭腦下都解決了)
阿基米德在《論平面圖形的平衡》一書中最早提出了杠桿原理。他首先把杠桿實際應用中的一些經驗知識當作「不證自明的公理」,然後從這些公理出發,運用幾何學通過嚴密的邏輯論證,得出了杠桿原理。這些公理是:(1)在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;(2)在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;(3)在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下 傾;(4)一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替(5)相似圖形的重心以相似的方式分布……
正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。」阿基米德對杠桿的研究不僅僅停留在理論方面,而且據此原理還進行了一系列的發明創造。據說,他曾經藉助杠桿和滑輪組,使停放在沙灘上的桅桿順利下水,在保衛敘拉古免受羅馬海軍襲擊的戰斗中,阿基米德利用杠桿原理製造了遠、近距離的投石器,利用它射出各種飛彈和巨石攻擊敵人,曾把羅馬人阻於敘拉古城外達3年之久。
概念分析
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如果想要省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:動力×動力臂=阻力×阻力臂,即F1×l1=F2×l2這樣就是一個杠桿。動力臂延伸杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (力臂 > 力距);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 > 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,就能撬起地球"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
希望能幫到你,麻煩給「好評」
Ⅸ 杠桿原理是什麼
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
杠桿可以讓「小力」做出「大力」能做的功。
任何機械所輸出的能量,都不可能比輸入它的能量還多,這是「能量守恆定律」的要求。因此,對於一個理想的機械,它的「能量輸出」最多與「能量輸入」是相等的,這個時候,機械所輸出的功,等於輸入它的功。
可以想像一個用杠桿來翹起物體的例子。在過程中,杠桿所輸出的功,是「物體的重量」與「物體被抬起的高度」(或者說「輸出距離」)的乘積。而輸入杠桿的功,則是人所施加的「力」與「向下壓的距離」(或者說「輸入距離」)的乘積。
在理想的情況下,「輸出的功」與「輸入的功」相等,也就是「物體的重量」與「輸出距離」的乘積,等於「力」與「輸入距離」的乘積。這就意味著,在物體的重量一定的前提下,「力」的大小取決於「輸入距離」與「輸出距離」的比例。