Ⅰ 科學中的杠桿原理和數學有什麼關系
【教學目標】 科學概念:
1、杠桿有三個點:用力點、支點和阻力點。
2、用力點到支點的距離大於阻力點到支點的距離時省力;
用力點到支點的距離等於阻力點到支點的距離時不省力也不費力; 用力點到支點的距離小於阻力點到支點的距離時費力。
3、杠桿原理在生活中廣泛使用,給人們的生活帶來更多省力和方便。 過程與方法:
1、科學小游戲:提供一根金屬撬棍和金屬支點,由學生上台分別用食指按壓撬棍兩端,激發全體學生的探究熱情。
2、學生用自己的文具擺一擺杠桿,揭示杠桿的三個基本點,引出杠桿尺的研究。 3、杠桿尺的探究實驗:教師說明和演示杠桿尺的實驗探究方法,學生進行杠桿尺實驗探究並填寫實驗記錄,最後進行杠桿尺實驗的數據分析得出杠桿原理。 4、換位實驗:數字化撬棍原理器的實驗探究,分析數據,進一步理清杠桿原理。 5、找一找生活中杠桿類工具的杠桿原理。包括:井水抽水機、羊角榔頭拔釘子。 情感態度價值觀:
1、體會有效體驗,認真實驗,獲取證據,用證據來檢驗推測的重要性。 2、體驗科學探究的樂趣,在科學學習中尊重他人意見,敢於提出不同見解,樂於合作與交流。
3、體會科技提升生活質量,熱愛科技創新的科學意識。 【教學重難點】
教學重點:通過實驗,體會和理解杠桿原理,找出生活中的杠桿原理。 教學難點:用實驗探究的方法理解杠桿原理。 【教學准備】 △ 學生實驗:
1、游戲實驗材料:一根金屬棒、一個金屬支點。
2、學生分組實驗材料:每組准備杠桿尺(機械實驗盒)、兩盒砝碼。 3、學生實驗材料:數字化撬棍原理器(教師自製教具)
Ⅱ 杠桿原理數學題
10千克
Ⅲ 怎樣從數學的角度解釋杠桿原理最好有圖示
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
中文名
杠桿原理
外文名
lever principle
別 稱
杠桿平衡條件
表達式
F1· L1=F2·L2.
提出者
阿基米德
提出時間
公元前245年左右
應用學科
物理科學
適用領域范圍
杠桿力學
適用領域范圍
建築,物理,機械
原理提出
古希臘科學家阿基米德有這樣一句流傳很久的名言:「給我一個支點,我就能撬起整個地球!」,這句話便是說杠桿原理。
阿基米德在《論平面圖形的平衡》一書中最早提出了杠桿原理。他首先把杠桿實際應用中的一些經驗知識當作「不證自明的公理」,然後從這些公理出發,運用幾何學通過嚴密的邏輯論證,得出了杠桿原理。
阿基米德
這些公理是:
(1)在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;
(2)在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;
(3)在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下 傾;
(4)一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替
(5)相似圖形的重心以相似的方式分布……
正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。」阿基米德對杠桿的研究不僅僅停留在理論方面,而且據此原理還進行了一系列的發明創造。據說,他曾經藉助杠桿和滑輪組,使停放在沙灘上的船隻順利下水,在保衛敘拉古免受羅馬海軍襲擊的戰斗中,阿基米德利用杠桿原理製造了遠、近距離的投石器,利用它射出各種飛彈和巨石攻擊敵人,曾把羅馬人阻於敘拉古城外達3年之久。
這里還要順便提及的是,在中國歷史上也早有關於杠桿的記載。戰國時代的墨子曾經總結過這方面的規律,在《墨經》中就有兩條專門記載杠桿原理的。這兩條對杠桿的平衡說得很全面。裡面有等臂的,有不等臂的;有改變兩端重量使它偏動的,也有改變兩臂長度使它偏動的。這樣的記載,在世界物理學史上也是非常有價值的。
概念分析
編輯
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如果想要省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:動力×動力臂=阻力×阻力臂,即F1×L1=F2×L2這樣就是一個杠桿。
動力臂延伸
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (動力臂 > 阻力臂);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 > 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,就能撬起地球"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
Ⅳ 杠桿比例的計算公式
杠桿抄比率=正股現貨價÷(認股證價格x換股比率)
Delta值:所謂的delta值,是指「當股票價格變動一單位,預期權證價格會隨之變動的單位量」。它是經B-S 模型等估值模型經過數學上的微分計算所產生的數值,而且也是隨時變動的。
實際杠桿比率(Effective Gearing):Delta 值乘以另一個重要指標Gearing 就可以得到權證的動態杠桿系數Effective Gearing,該系數反映了權證交易價格對於標的股票價格的敏感性,表示當正股升跌1%時,認股權證的理論價格會變動多少個百分點。
Ⅳ 怎樣從數學的角度解釋杠桿原理
[編輯本段]原理簡介
杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(用力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1• L1=F2•L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
古希臘科學家阿基米德有這樣一句流傳千古的名言:「給我一個支點,我就能撬起地球!」這句話有著嚴格的科學根據.
阿基米德在《論平面圖形的平衡》一書中最早提出了杠桿原理。他首先把杠桿實際應用中的一些經驗知識當作「不證自明的公理」,然後從這些公理出發,運用幾何學通過嚴密的邏輯論證,得出了杠桿原理。這些公理是:(1)在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;(2)在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;(3)在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下傾;(4)一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替(5)相似圖形的重心以相似的方式分布……
正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。阿基米德對杠桿的研究不僅僅停留在理論方面,而且據此原理還進行了一系列的發明創造。據說,他曾經藉助杠桿和滑輪組,使停放在沙灘上的桅般順利下水,在保衛敘拉古免受羅馬海軍襲擊的戰斗中,阿基米德利用杠桿原理製造了遠、近距離的投石器,利用它射出各種飛彈和巨石攻擊敵人,曾把羅馬人阻於敘拉古城外達3年之久。
[編輯本段]概念分析
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:支點到受力點距離(力矩) * 受力 = 支點到施力點距離(力臂) * 施力,即F1*L1=F2*L2這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (力臂 > 力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 > 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,我就能把地球挪動!"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
[編輯本段]杠桿分類
杠桿可分為省力杠桿、費力杠桿和等臂杠桿。這幾類杠桿有如下特徵:
1.省力杠桿:L1>L2, F1<F2 ,省力、費距離。如拔釘子用的羊角錘、鍘刀,瓶蓋扳子,手推車等。
2.費力杠桿: L1<L2, F1>F2,費力、省距離,如釣魚竿、鑷子,筷子,船槳等。
3.等臂杠桿: L1=L2, F1=F2,既不省力也不費力,又不多移動距離,如天平、定滑輪等。
Ⅵ 什麼是杠桿比例 是怎麼計算的
杠桿比例(Gearing),亦稱杠桿比率 (Leverage Ratio)
Gearing值是在某個特定時點上,正股股價與其權證價格的比值,該指標反映投資正股相對投資認股權證的成本比例,假設杠桿比率為10倍,這只說明投資認股權證的成本是投資正股的十分之一,並不表示當正股上升1%,該認股權證的價格會上升10%。
在金融衍生工具市場,杠桿比率是期貨或期權倉位所代表的實際價值與建立倉位所付出的現金額的比率。杠桿比率越高,市場價格每單位的變動可帶來的盈利或虧損就越大,意味著投資風險較高,走勢有利時會大有斬獲,不利時則很可能血本無歸。
杠桿比率=正股現貨價÷(認股證價格x換股比率)
Delta值:所謂的delta值,是指「當股票價格變動一單位,預期權證價格會隨之變動的單位量」。它是經B-S 模型等估值模型經過數學上的微分計算所產生的數值,而且也是隨時變動的。
實際杠桿比率(Effective Gearing):Delta 值乘以另一個重要指標Gearing 就可以得到權證的動態杠桿系數
杠桿比例
Effective Gearing,該系數反映了權證交易價格對於標的股票價格的敏感性,表示當正股升跌1%時,認股權證的理論價格會變動多少個百分點。
Ⅶ 杠桿原理蘊含的數學原理那就是什麼關系。
反比例關系。兩種相關聯的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數的積一定。這兩種量叫做成反比例的量。它們的關系叫做反比例關系。
阿基米德在《論平面圖形的平衡》一書中最早提出了杠桿原理。他首先把杠桿實際應用中的一些經驗知識當作「不證自明的公理」,然後從這些公理出發,運用幾何學通過嚴密的邏輯論證,得出了杠桿原理。
這些公理是:
(1)在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;
(2)在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;
(3)在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下 傾;
(4)一個重物的作置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替;
(5)相似圖形的重心以相似的方式分布。
Ⅷ 杠桿計算公式
設動力F1、阻力F2、動力臂長度L1、阻力臂長度L2,則
杠桿原理關系式為:F1L1=F2L2
可有以下四種變換式:
F1=F2L2/L1
F2=F1L1/L2
L1=F2L2/F1
L2=F1L1/F2
杠桿五要素:
1、支點:杠桿繞著轉動的點,通常用字母O來表示。
2、動力:使杠桿轉動的力,通常用F1來表示。
3、阻力:阻礙杠桿轉動的力,通常用F2來表示。
4、動力臂:從支點到動力作用線的距離,通常用L1表示。
5、阻力臂:從支點到阻力作用線的距離,通常用L2表示。
(註:動力作用線、阻力作用線、動力臂、阻力臂皆用虛線表示。力臂的下角標隨著力的下角標而改變。例:動力為F3,則動力臂為L3;阻力為F5,阻力臂為L5。)
(8)杠桿模型數學擴展閱讀:
杠桿的平衡條件 :
動力×動力臂=阻力×阻力臂
公式:
F1×L1=F2×L2變形式:
F1:F2=L2:L1動力臂是阻力臂的幾倍,那麼動力就是阻力的幾分之一。
公式:
F1×L1=F2×L2一根硬棒能成為杠桿,不僅要有力的作用,而且必須能繞某固定點轉動,缺少任何一個條件,硬棒就不能成為杠桿,例如酒瓶起子在沒有使用時,就不能稱為杠桿。
動力和阻力是相對的,不論是動力還是阻力,受力物體都是杠桿,作用於杠桿的物體都是施力物體。