① 以杠桿原理解釋輪軸為什麼能省力
定義
杠桿平衡是指杠桿處於靜止狀態下或者勻速轉動的狀態下。
怎樣使杠桿保持平衡
動力×支點到動力作用線的距離=阻力×支點到阻力作用線的距離
即
動力×動力臂=阻力×阻力臂
即f1×l1=f2×l2
1.省力杠桿
l1>l2,f1f2,費力、省距離,如釣魚竿、鑷子,筷子,船槳
裁縫用的剪刀
理發師用的剪刀等。
3.等臂杠桿
l1=l2,f1=f2,既不省力也不費力,又不多移動距離,如天平、定滑輪等。
② 汽車前輪方向盤的杠桿原理圖是什麼樣的
汽車方向盤是一個操縱件,那麼要對汽車的轉向系進行了解。整個轉向機構的原理是通過齒輪齒條把圓周運動轉變為直線運動,推動車輪旋轉。原理圖如下:
單說方向盤的話,就是個杠桿。方向盤的半徑是力臂長度,方向盤越大越省力。
(2)軲轆杠桿原理擴展閱讀
汽車轉向器分為幾種類型。 最常見的是齒條齒輪式轉向器和循環球式轉向器。齒條齒輪式轉向系統已迅速成為汽車、小型貨車及SUV上普遍使用的轉向系統類型。其工作機制非常簡單。
齒條齒輪式齒輪組被包在一個金屬管中,齒條的各個齒端都突出在金屬管外,並用橫拉桿連在一起。小齒輪連在轉向軸上。轉動方向盤時,齒輪就會旋轉,從而帶動齒條運動。齒條各齒端的橫拉桿連接在轉向軸的轉向臂上。
目前,眾多貨車和SUV上都在使用循環球式轉向系統。 其轉動車輪的拉桿與齒條齒輪式轉向系統稍有不同。轉動車輪的拉桿與齒條齒輪式轉向系統稍有不同。循環球式轉向器有一個堝桿,循環球式系統中的動力轉向工作原理與齒條齒輪式系統類似。 其輔助動力也是通過向金屬塊一側注入高壓液體來提供的。
③ 動滑輪的杠桿原理是什麼
利用F1×L1=F2×L2即動力×動力臂=阻力×阻力臂就可知,動滑輪其動力臂(直徑)是阻力臂(半徑)2倍,則F1為F2的一半,這當然省力呢.(這是不計動滑輪的重)
如果計算動滑輪的重,就要看看動滑輪有多重,被提升的物體有多重,才可以作出定論.(例如:動滑輪10千克,被提升物體是1千克,這樣用動滑輪就不省力了,反而費力.)
④ 軲轆井的杠桿原理
圖傳不上去,在生產、生活中,人們常會用到輪軸,輪軸由具有公共轉軸的輪和軸構成.轆轤就是輪軸的一種,它的截面圖如圖所示,轆轤也可以看成是杠桿的變形,轆轤繞著轉動的軸心就是支點,轆轤的把手轉動一圈就是如圖所示的輪,作用在把手上的力為動力F1,水桶對軸向下的拉力是阻力F2,請在轆轤的截面圖上畫出轆轤的杠桿受力示意圖.通過示意圖可以發現轆轤是 省力杠桿.
⑤ 動滑輪的杠桿原理
1. 在研究問題時,選對參照物是很重要的。當然,你可以選A作支點,但不方便研究,因此選B作支點。
2. 不用用杠桿原理去解釋。其實道理很簡單,因為在同一個滑輪組中,每段繩所受的力是相等的,因此圖中有三根繩子承重,所以F=1/3G
⑥ 滑輪的杠桿工作原理是怎麼樣的
定滑輪是一個等臂杠桿,支點在定滑輪的軸心,動力臂和阻力臂分別是定滑輪的半徑, 動滑輪是動力臂是阻力臂的杠桿,阻力作用點在動滑輪的軸心,動力作用點在繩子自由端與動滑輪相切的點,支點在繩子另一端和動滑輪相切的點,如果豎直向上勻速拉繩子,則動力臂是阻力臂的兩倍,省一半力
⑦ 為什麼滑輪的實質是杠桿
定滑輪實質是等臂杠桿,不省力也不費力,但可以改變作用力方向。杠桿的動力臂和阻力臂分別是滑輪的半徑,由於半徑相等,所以動力臂等於阻力臂,杠桿既不省力也不費力。
定滑輪不能省力,而且在繩重及繩與輪之間的摩擦不計的情況下,細繩的受力方向無論向何處,吊起重物所用的力都相等,因為動力臂和阻力臂都相等且等於滑輪的半徑。
動滑輪省1/2力多費1倍距離,這是因為使用動滑輪時,鉤碼由兩段繩子吊著,每段繩子只承擔鉤碼重的一半,而且不能改變力的方向。實質是個動力臂(L1)為阻力臂(L2)二倍的杠桿。
(7)軲轆杠桿原理擴展閱讀
使用中,省力多少和繩子的繞法,決定於滑輪組的使用效果。
繞繩的原則是:當定滑輪和動滑輪數量相等時,繩子的自由端可以從動滑輪出來,也可以從定滑輪出來,而且從定滑輪出來時,繩子的固定端掛在定滑輪上;
從動滑輪出來時,繩子的固定端掛在動滑輪上。定滑輪和動滑輪數量差不會超過1。他們數量不相等時,繩子的自由端從多的那一邊出來,繩子的固定端掛在少的那一邊。
動滑輪一定時,當繩子的固定端掛在動滑輪上時,滑輪組要比繩子的固定端掛在定滑輪時省力(因為有更多段繩子承擔物重)。
使用滑輪組時,重物有幾條繩索承受,提起物體所用的力就是物重的幾分之一。
⑧ 杠桿、斜面、滑輪、輪軸、定滑輪、動滑輪的原理
一、杠桿原理
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。
即:動力×動力臂=阻力×阻力臂,用代數式表示為F1·L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
二、斜面原理
斜面(inclined plane)是一種傾斜的平板,能夠將物體以相對較小的力從低處提升至高處,但提升這物體的路徑長度也會增加。斜面是古代希臘人提出的六種簡單機械之中的一種。
假若斜面的斜率越小,即斜面與水平面之間的夾角越小,則需施加於物體的作用力會越小,但移動距離也越長;反之亦然。假設移動負載不會造成能量的儲存或耗散,則斜面的機械利益是其長度與提升高度的比率。
在日常生活中,時常會使用到斜面。行駛車輛的坡道是一種常見的斜面;卡車裝載大型貨物時,常會在車尾斜搭一塊木板,將貨物從木板上往上推,所應用的也是斜面的理論。
三、滑輪原理
滑輪主要的功能是牽拉負載、改變施力方向、傳輸功率等等。多個滑輪共同組成的機械稱為「滑輪組」,或「復式滑輪」。滑輪組的機械利益較大,可以牽拉較重的負載。滑輪也可以成為鏈傳動或帶傳動的組件,將功率從一個旋轉軸傳輸到另一個旋轉軸。
四、輪軸原理
輪軸的實質是可以連續旋轉杠桿.使用輪軸時,一般情況下作用在輪上的力和軸上的力的作用線都與輪和軸相切,因此,它們的力臂就是對應的輪半徑和軸半徑.
由於輪半徑總大於軸半徑,因此當動力作用於輪時,輪軸為省力費距離杠桿(下面的第一幅圖),實際的例子:有自行車腳踏與輪盤(大齒輪)是省力輪軸.當動力作用於軸上時,輪軸為費力省距離杠桿,實際的例子有:自行車後輪與輪上的飛盤(小齒輪)、吊扇的扇葉和軸都是費力輪軸的應用。
五、定滑輪原理
使用時,滑輪的位置固定不變;定滑輪實質是等臂杠桿,不省力也不費力,但可以改變作用力方向.杠桿的動力臂和阻力臂分別是滑輪的半徑,由於半徑相等,所以動力臂等於阻力臂,杠桿既不省力也不費力。
定滑輪不能省力,而且在繩重及繩與輪之間的摩擦不計的情況下,細繩的受力方向無論向何處,吊起重物所用的力都相等,因為動力臂和阻力臂都相等且等於滑輪的半徑。
六、動滑輪原理
動滑輪省1/2力多費1倍距離,這是因為使用動滑輪時,鉤碼由兩段繩子吊著,每段繩子只承擔鉤碼重的一半,而且不能改變力的方向。實質是個動力臂(L1)為阻力臂(L2)二倍的杠桿:圖中,O是支點,F1是提升物體的動力,F2是物體的重力(也可理解為不用機械時提升物體用的力)。
⑨ 滑輪組與杠桿原理
滑輪組(由動滑輪及定滑輪組成,動滑輪是省力杠桿,定滑輪改變物體運動方向,數量不固定)能省力且改變物體運動方向,但不省功