导航:首页 > 汇率佣金 > 锰硅持仓1901

锰硅持仓1901

发布时间:2021-04-28 16:34:27

⑴ 电焊的由来

电焊是在19世纪末随着电力工业的发展而发展起来的。
1885年俄国H.H.别纳尔多斯发现了碳极电弧。
1887年美国E.汤姆森(Elihu Thomson)发明了用于薄板焊接的电阻焊。
20世纪初,手弧焊已进入实用阶段。20年代美国制成了自动电弧焊机。
1930年美国发明了埋弧焊。
40年代和50年代初,钨极和熔化极惰性气体保护焊,以及二氧化碳气体保护焊相继在美国和苏联问世,促进了气体保护电弧焊的应用和发展。
1951年苏联发明了电渣焊,成为大厚度焊件的高效焊接方法。
50年代中,超声波焊、摩擦焊和扩散焊又相继在美国和苏联问世。50年代末和60年代中出现的等离子弧焊、电子束焊和激光焊标志着高功率密度熔焊的发展,使得许多难以用其他方法焊接的材料和结构得以焊接。

⑵ 轴承钢成分有哪些

轴承钢,是钢铁行业里应用得最为广泛的一种,也是钢铁生产过程中要求最严格的钢种之一。使用轴承钢,可以有效地提高轴承的扭转性能、降低噪音和延迟使用寿命。由于其性能优越,所以国际上严格要求了其成分必须具有均匀的硬度、耐磨性和高的弹性极限,但其成分里究竟应该包含多少碳量、多少含铬量,却是一门大大的学问。每一位冶金技术人员都应该懂得不同种类的轴承钢的成分构成,才能更顺利地冶炼出高质量的轴承钢。



轴承钢,作为是所有钢铁生产中要求最严格的钢种之一,其含碳量ωc为1%左右,含铬量ωcr为0.5%-1.65%。国际上按照国际标准,将轴承钢分为六大类:高碳铬轴承钢、无铬轴承钢、渗碳轴承钢、不锈轴承钢、中高温轴承钢及防磁轴承钢。其中,高碳铬轴承钢GCr15产量目前已占到世界轴承钢生产总量的80%以上。而高碳铬轴承钢GCr15是世界上生产量最大的轴承钢,含碳Wc为1%左右,含铬量Wcr为1.5%左右。从1901年诞生至今100多年来,高碳铬轴承钢GCr15的主要成分基本上没有改变过。以至于轴承钢如果没有特殊的说明,那就是指GCr15。




一般的轴承钢,主要都是高碳铬轴承钢,即含碳量1%左右,加入1.5%左右的铬,并含有少量的锰、硅元素的过共析钢。铬可以改善热处理性能、提高淬透性、组织均匀性、回火稳定性,又可以提高钢的防锈性能和磨削性能。但当铬含量超过1.65%时,淬火后会增加钢中残余奥氏体,降低硬度和尺寸稳定性,增加碳化物的不均匀性,降低钢的冲击韧性和疲劳强度。为此,高碳铬轴承钢中的含铬量一般控制在1,65%以下。只有严格控制轴承钢中的化学成分,才能通过热处理工序获得满足轴承性能的组织和硬度。




面对成分要求如此严格的轴承钢,其冶金过程中对质量的控制也极其严苛,要注意如下几点:

(1)较高的尺寸精度

(2)特别严格的纯洁度

(3)严格的低倍组织和显微(高倍)组织

(4)特别严格的表面缺陷和内部缺陷

(5)严格的碳化物不均匀性

(6)严格的表面脱碳层深度




随着经济发展,中国各地的城市基础设施工程正进行得热火朝天,而精密的轴承等基础机械铸造业也飞速发展,造成对轴承的需求越来越多,未来的轴承钢市场前景一片光明。各大钢铁厂更要充分了解各大分类的轴承钢成分构成及其物理性能,在冶炼过程中要严格控制成分含量,同时注意对冶金质量的严格控制,使得冶炼出来的轴承钢符合国际标准,并可以满足快速增长的市场需求。

⑶ 轴承钢淬火出现片状马氏体合格吗

滚动轴承钢 制造各类滚动轴承套圈和滚动体的钢。轴承转动时承受很高的交变应力,除要求材料有较高的抗压强度、接触疲劳强度和耐磨性外,还要有一定的韧性、耐蚀性、良好的尺寸稳定性和工艺性。 高碳铬轴承钢于1901年首先出现于欧洲。1913年美国将其列为标准钢种。70多年来,各国发展出许多提高轴承钢纯洁度和改善碳化物不均匀性的新工艺,真空脱气、炉外精炼等技术已广泛应用于轴承钢生产,并以轴承钢管材制造套圈,进一步提高了钢材利用率和轴承寿命。中国于1951年开始生产轴承钢。滚动轴承钢(ball bearing steel)是用于制造滚动轴承的滚动体和内外套圈的钢,通常在淬火状态下使用。滚动轴承在工作中需承受很高的交变载荷,滚动体与内外圈之间的接触应力大,同时又工作在润滑剂介质中。因此,滚动轴承钢具有高的抗压强度和抗疲劳强度,有一定的韧性、塑性、耐磨性和耐蚀性,钢的内部组织、成分均匀,热处理后有良好的尺寸稳定性。常用的滚动轴承钢是含碳0.95%~1.10%、含铬0.40%~1.60%的高碳低铬轴承钢,如GCr6、GCr9、GCr15等。 为了满足轴承在不同工作情况下的使用要求,还发展了特殊用途的轴承钢,如制造轧钢机轴承用的耐冲击渗碳轴承钢、航空发动机轴承用的高温轴承钢和在腐蚀介质中工作的不锈轴承钢等。 高碳铬轴承钢于1901年首先出现于欧洲。1913年美国将其列为标准钢种滚动轴承钢。70多年来,各国发展出许多提高轴承钢纯洁度和改善碳化物不均匀性的新工艺,真空脱气、炉外精炼等技术已广泛应用于轴承钢生产,并以轴承钢钢管制造套圈,进一步提高了钢材利用率和轴承寿命。中国于1951年开始生产轴承钢。现代的滚动轴承钢可分为高碳铬轴承钢、渗碳铬轴承用钢、不锈轴承用钢和高温轴承用钢四大类。在轴承制造工业中应用面广、使用量大的是高碳铬轴承钢。高的纯洁度和良好的均匀组织是轴承钢的主要质量指标,因此对轴承钢中的非金属夹杂物和碳化物不均匀性等,都在钢材标准中根据不同使用条件,规定了合格级别。 碳 是轴承钢中主要强化元素。轴承钢含碳量一般较高,使用状态主要以隐晶针和细晶针状马氏体为基体,在组织中保留一定数量的淬火未溶碳化物,以提高钢的耐磨性。而适当降低钢中的含碳量,可增加合金元素在基体中的溶解度,虽减少淬火未溶碳化物数量,但提高钢的淬透性和接触疲劳强度;反之,增加含碳量则有利于钢的耐磨性。因此轴承钢中的含碳量根据不同的用途来确定,通常控制在0.8~1.2%范围内。 铬 是形成碳化物的主要元素。高碳铬钢在各种热处理状态下都形成M3C型碳化物(M表示金属)。铬可提高钢的力学性能、淬透性和组织均匀性。还能增加钢的耐蚀能力。钢中含铬量一般都不超过2.0%,钼能取代钢中的铬,在增加钢的淬透性上,钼比铬强,所以已发展了高淬透性的含钼高碳铬轴承钢。 硅、锰 在轴承钢中能提高淬透性。利用硅、锰的典型钢号为 GCr15SiMn。锰还可和钢中的硫生成稳定的MnS,硫化物常能包围氧化物,形成以氧化物为核心的复合夹杂物,减轻氧化物对钢的危害作用。轴承钢一般用碱性电炉冶炼,也可加炉外真空脱气处理或钢包真空精炼。轴承钢的铸锭工艺和锭型设计对非金属夹杂物和碳化物在钢中的分布都有很大影响。轴承钢容易产生白点,所以钢锭和钢坯都要缓冷。航空用优质轴承钢需用电渣重熔或真空自耗重熔等特殊方法冶炼。 轴承钢的热处理 轴承钢锭一般要在1200~1250℃高温下进行长时间扩散退火,以改善碳化物偏析。热加工时要控制炉内气氛,钢坯加热温度不宜过高,保温时间不宜过长,以免发生严重脱碳。终轧(锻)温度通常在800~900℃之间,过高易出现粗大网状碳化物,过低易形成轧(锻)裂纹。轧(锻)材成品应快冷至650℃,以防止渗碳体在晶界上呈网状析出,有条件时可采用控制轧制工艺。 为了取得良好的切削性和淬火前的预组织,冷加工用轴承钢材要进行完全的球化退火。退火温度一般为780~800℃,退火时要防止脱碳。如果轧制钢材存在过粗的网状渗碳体,则退火前需先进行正火处理。铬轴承钢通常在830~860℃之间加热,油淬,150~180℃回火。精密轴承的组织中,应尽可能降低残余奥氏体量或使残余奥氏体在使用过程中保持稳定,因此常需在淬火后进行-80℃(或更低温度)冷处理和在 120~140℃下进行长时间的稳定化处理。

⑷ 形形色色的矿产资源的种类有哪些

迄今为止,全世界发现的矿产近200种(我国发现168种),据对154个国家主要矿产资源的测算结果,世界矿产资源总的潜在价值约为142万亿美元。

世界上蕴藏量最丰富的大概就是黑色金属了。黑色金属,包括铁、锰、铬、钛和钒等5种矿产。

1992年世界铁矿石储量为1500亿吨,前苏联、澳大利亚、巴西、加拿大、美国、印度和南非七国共占有世界铁金属储量的84%。按年产10亿吨铁矿石计算,目前世界铁矿石储量的静态保证年限为151年。

锰储量为7.26亿~8亿吨,未包括海底锰资源。世界锰储量的80%以上集中在前苏联和南非。上述储量的静态保证年限为40年。但由于有海底锰结核和锰结壳这一未开发的资源潜力,世界不必担心锰矿资源不足。

铬、钛、钒金属已探明的储量分别为14亿吨、2亿吨(钛铁矿)、1000万吨,静态保证年限分别为132年、55年和312年。

有色金属,包括铝、铜、铅、锌、铝、钨、锡、钼、锑、镍、镁、汞、钴、铋等13种矿产。

世界铝土矿资源丰富,储量巨大,探明储量达230亿吨。澳大利亚、几内亚、巴西、牙买加等国是世界铝土矿资源大国。世界现有储量的静态保证年限达216年以上。

除铝外,世界钴资源保证年限也较高,其储量为400万吨,静态保证年限为168年。此外,海底丰富的钴资源可以确保人类无缺钴之虑。

其他有色金属中,钼、钨、镍、锑的探明储量静态保证年限均在50年到60年之间,铜、铅、锌、镁、汞、铋则显得有所不足,其静态保证年限一般在30年或30年以下。

贵金属和稀土,除金、银储量消耗过快外,铂族金属和稀土氧化物资源不足为虑。

非金属,包括硫、磷、钾、硼、碱、萤石、重晶石、石墨、石膏、石棉、滑石、硅灰石、高岭土、硅藻土、金刚石等矿产。这些是世界上极为丰富的资源之一,其中除硫、金刚石,特别是金刚石资源严重不足,静态保证年限较低以外,其他都可以成为未来工业和人们生活可资依赖的矿产原料来源。

总的看来,世界矿产资源中期供需形势较为缓和:但资源短缺与人口增长及经济发展的需求之间的矛盾将继续存在,资源供需形势将出现周期性波动。

20世纪90年代初期,世界矿产资源供需形势与20世纪80年代末期相比没有出现重大转机。由于全球性特别是在世界经济中占主导地位的工业化国家经济持续不景气,加之前苏联和东欧各国经济在转轨过程中大幅度下滑,全球经济进入了长达五六年的调整阶段。世界经济增长率明显下降,继1991年出现0.3%的负增长之后,1992年工业化国家平均经济增长率为1.6%,东欧和独联体各国经济继续大幅度下滑。与此相对照,发展中国家作为一个整体,其经济呈现出良好的势头,1991年增长3.4%,1992年达4.5%,亚洲国家超过6%。

由于工业化和经合组织国家经济结构改组、新技术革命导致基础原材料消耗降低以及节约、替代等原因,矿产原料的使用强度正在逐年减少。工业化和经合组织国家的矿产原料消费量增长缓慢,多数矿产品供过于求,导致生产能力过剩、矿产品积压、价格下跌——呈现全球性的矿业萧条。

这段时间里,矿产品需求的增长主要在发展中国家和地区,特别是亚太地区。在工业化国家和经合组织国家的钢、铝、铜、锌等消费量以不同幅度下降时,亚太地区的金属使用率却呈上升趋势。过去10年中,亚太地区钢的用量平均年增长2.2%,锌年增长0.5%,铜的使用率平均年增长率高达8.4%。预计今后10~20年内,亚太地区的矿产品消费量仍将有较快的增长,原因是拥有庞大人口的国家——中国和印度,人均有色金属消费量只及日本或英国的1/20~1/10。

能源和矿产资源供需形势变化还可以从另外一个角度去分析。20世纪以来,人类对矿产资源的需求显著增加了,1901~1980年全世界采出的矿物原料价值增长了9.6倍,其中后20年为前60年的1.6倍。石油农业的发展使农业对矿物原料的依赖程度提高了,工业和整个经济对能源和矿产资源消耗的规模进一步加大。1986年对50个国家的统计表明,人均国民生产总值与能量及人均能源消耗呈线性正相关关系:人均国民生产总值不到1000美元时,人均能耗在1500千克(标准煤)以下;人均国民生产总值为4000美元时,人均能耗随之上升,达10000千克(标准煤)以上。近年来,虽然世界对矿物原料需求速度相对有所降低,但资源消费的绝对数量仍然在增加。而且,20世纪80年代以来,世界矿产品贸易额不断增长,到1987年出口贸易额(包括能源产品)已达4420亿美元,占世界出口总额的17.7%。1991年世界矿产品出口贸易值约为6850亿美元,比1990年增长6%。预测到21世纪,世界矿产品贸易额仍将是缓慢增长的趋势。

大量的统计资料表明,人类社会在不同的经济发展阶段,对矿产资源的消耗强度呈波动曲线。所以在观察矿产资源供需形势时,我们要掌握两点:一是不同国家在不同发展阶段的需求不同,大多数发展中国家在未来30年至50年中,常规矿产仍保持一定的需求增长,而新矿产则呈强劲增长趋势。

⑸ 学习任务化石的形成及保存分析

【任务描述】 ①正确分析化石的形成条件,了解化石的石化作用;②了解常见的化石类型;③熟练鉴定化石类型。

一、化石的概念

化石是指保存在岩层中地质历史时期的生物遗体和遗迹。因此,化石区别于一般的岩石在于,它必须与古代生物相联系,它必须具有诸如形状、结构、纹饰和有机化学成分等生物特征,或者是由生物生活活动所产生的并保留下来的痕迹。一些保存在地层中与生物和生物活动无关的物体,虽然在形态上与某些化石十分相似,但只能称为假化石,如姜结石、龟背石、泥裂、卵形砾石、波痕、放射状结晶的矿物集合体、矿质结核、树枝状铁质沉淀物等,都不是化石。

因为古生物学是以化石为研究对象的,而且古生物是相对现生生物而言的,它们具有生活时代上的差别。通常古、今生物之间的时间界线被定在距今1万年左右,即生活在全新世以前的生物才称为古生物,而全新世以来的生物属于现生生物的范畴。因此,埋藏在现代沉积物中的生物遗体不是化石,人类历史以来的考古文物一般亦不被认为是化石。

二、化石的种类

在古生物学研究的化石中,有些生物体和化石个体较大,利用常规方法在肉眼下就能直接进行研究,这些化石称为大化石。但是某些生物类别,如有孔虫、放射虫、介形虫、沟鞭藻和硅藻等,以及某些古生物类别的微小部分或微小器官,如牙形石、轮藻和孢子花粉等,形体微小,一般肉眼难以辨认,这些化石称为微化石。对于微化石的研究必须采用专门的技术和方法从岩石中将化石处理、分离出来,或磨制成切片。

保存在地层中的龟背石、卵形砾石、放射状结晶的矿物集合体、矿质结核、树枝状铁锰质沉积物等,在形态上与化石有极其形似性,但它们与生物或生物生命活动无关,我们称其为假化石(图1-8)。

图1-8 假化石

(据郭宝炎,2009)

三、化石的形成过程

研究生物自死亡后埋藏在沉积物中,随同沉积物经化石化作用形成化石的学科称为埋藏学。从埋藏学角度,可将化石形成的全部过程分为图1-9所示的几个阶段。

图1-9 化石形成的过程

(据孙跃武等,2006)

◎生物群落:是在一定区域或同一环境里各种生物居群相互结合的一种结构单元。这种单元结合松散,在其形成之前及形成以后,不是固定不变的,而是经常在演变着,但演变有规律性,同时群落也具有相对的稳定性。

◎尸积群:因各种原因生物死亡后尸体堆积而成的尸积群或称死亡群。尸积群可能属于同一群落的成分,亦可能是几个群落的成分死后的混合堆积。这主要受沉积物的沉积速度、环境稳定性、生物扰动等因素的控制。

◎埋藏群:尸积群被埋藏后称埋藏群,它可能是原地埋藏,也可能迁移至他处或与其他群落的尸积群相混杂成为异地埋藏。原地埋藏不同于原位埋藏。一般生物死亡后只要在其所属群落生活的范围内埋藏都属原地埋藏。

◎化石群:埋藏群通过石化作用与周围的沉积物同时形成化石群。在原地埋藏,其成分由生物群落的组成部分形成的化石群称化石群落。化石群落是生物群落中被保存下来的一部分,不能充分表明彼此间的关系(如取食、保护等),但可指明它们原来生活于同一处所。异地埋藏所形成的化石群称为化石组合。化石组合可能包括残留原地种类,即保留一部分在原地埋藏的种类,而个体大小和数量亦非原来面貌;搬迁种类,即由不同环境迁入的同时期种类;转移种类,即随同较老的岩石转移而来再沉积的不同时期种类。研究原地埋藏的化石群落和异地埋藏的残留原地种类可恢复原地环境,搬迁种类对研究古地理环境可提供有益的资料,如水流强度、水流方向、能量高低等。一般埋藏在原地的化石多保存较完整,很少被破坏,有时能保存原来生活时的状态。异地埋藏的化石经过搬运常有不同程度的磨损或分选等现象。

四、化石的形成条件

地史时期的生物遗体及其生命活动的痕迹在被沉积物埋藏后,经历了漫长的地质年代,随着沉积物的成岩作用,埋藏在沉积物中的生物体在成岩作用下经过物理化学作用的改造,即石化作用,而形成化石。化石的形成和保存取决于以下几方面的条件。

(一)生物本身条件

从生物本身条件来说,最好具有硬体,因为软体部分容易腐烂、分解而消失,而硬体主要是由矿物质组成的,能够比较持久地抵御各种破坏作用。但是,硬体的矿物质成分不同,保存为化石的可能性也不同。由方解石、硅质化合物和甲氰磷酸钙等矿物组成的生物硬体,在成岩和石化作用过程中比较稳定,容易保存为化石;含镁方解石等不稳定矿物,在转化为稳定矿物之前则容易遭受破坏。有机质硬体如角质层、木质、几丁质薄膜等,虽易遭受破坏,但在成岩过程中可炭化而保存为化石,如植物叶子、笔石体壁等。在某些极为特殊的条件下,一些动物的软体部分有时也能保存成为化石,如我国抚顺松脂包裹的昆虫化石(图1-10 之1),波兰斯大卢尼沥青湖中的披毛犀化石(图1-10 之2),西伯利亚第四纪冻土中的猛犸象化石(图1-10 之3,4)等。

(二)生物死亡的环境条件

生物死后尸体所处的物理化学环境直接影响化石的保存和形成。在高能水动力条件下,生物尸体容易被磨损破坏;水体pH 值小于7.8 时,碳酸钙组成的硬体易溶解;氧化环境中有机质易腐烂,而还原条件下有机质容易保存下来。此外,当时生活着的动物吞食和细菌的腐蚀作用亦影响化石的保存。

图1-10 完整实体化石

(据Scott,1978;河北师范学院生物系,1975;夏树芳,1978)

1.琥珀中的昆虫化石;2.沥青湖中的披毛犀化石;3,4.冻土层中的猛犸象化石

(三)埋藏条件

生物死后掩埋的沉积物不同,保存为化石的可能性亦不同。如果生物尸体是被化学沉积物、生物成因的沉积物所埋藏,那么,除软体部分外,硬体比较容易保存下来。如果是被粗碎屑沉积物埋藏,则由于粗碎屑沉积物的机械活动性和富孔隙,生物尸体容易遭受破坏。但在某些特殊的沉积物(如松脂、冰川冻土)中,一些生物的软体部分亦能完好地保存下来(图1-10)。

(四)时间条件及成岩作用的条件

只有生物死后迅速被埋藏起来才有可能被保存为化石,生物尸体如果暴露于空气中,会受氧化作用或被其他生物吞食而遭破坏,即使是硬体部分,也会被长时间风化作用所毁坏。因此,生物死后,必须要有某种沉积作用将其迅速掩埋,才能较好地保存下来。被埋藏起来的生物尸体还必须经过长时期的石化作用(即成岩作用)后才能形成化石。有时生物死后虽被迅速埋藏,但不久又因各种原因被重新暴露出来而遭受破坏,也不能形成化石。有时被埋藏在浅层沉积物中的生物尸体还有被生活在泥底中的生物吞食的可能。另一方面,保存在一些较古老的岩层中的化石,因发生岩层变形和变质作用亦容易使化石遭受破坏。

沉积物在固结成岩作用过程中,其压实和结晶作用都会影响化石的石化作用和化石的保存。一些孔隙度较高、含水分较多的碎屑沉积物压实作用显著,因而保存在其中的化石变形作用明显。保存在碳酸盐沉积物中的化石,由于沉积物的成岩重结晶作用,由碳酸钙组成的生物体也将发生重结晶,因而生物体的结构容易被破坏。只有压实作用较小且未经过严重重结晶作用的情况下,才能保存完好的化石。

五、化石的石化作用

化石的石化作用是指埋藏在沉积物中的生物遗体在成岩过程中经过物理化学作用的改造而形成化石的作用。主要有以下3种类型。

(一)矿质填充作用

生物的硬体组织中的一些空隙,通过石化作用被一些矿物质沉淀充填,生物的硬体变得致密和坚实。这种填充作用可发生在生物硬体结构之中,如贝壳中的微孔、脊椎动物的骨髓等,也可发生在生物硬体结构之间,如有孔虫壳的房室、珊瑚的隔壁之间等。

(二)置换作用

在石化作用过程中,原来生物体的组成物质被溶解,并逐渐被外来矿物质所填充。如果溶解和填充的速度相当,以分子的形式置换,那么原来生物的微细结构可以被保存下来,例如,华北二叠系的硅化木,其原来的木质纤维均被硅质置换,但其微细结构如年轮以及细胞轮廓都仍清晰可见(图1-11);中北美洲西部三叠系中硅化的动物标本,一些微小和精细的壳饰都完好地被保存下来。如果置换速度小于溶解速度,则生物体的微细构造不会保存,仅保留其外部形态。常见的置换作用有硅化、钙化、白云石化和黄铁矿化等。

图1-11 石化作用

(据童金南,2007)

(三)炭化作用

石化作用过程中生物遗体中不稳定的成分经分解和升馏作用而挥发消失,仅留下较稳定的炭质薄膜而保存为化石。例如,以几丁质成分(C15 H26 N2 O10)为主的笔石和植物叶子经升馏作用,H、N和O挥发逃逸,留下炭质化石薄膜(图1-11)。

六、化石的保存类型

根据化石可以保存的特点,化石可以分为实体化石、模铸化石、遗迹化石和化学化石四类。

(一)实体化石

指生物的遗体或其一部分保存为化石。在极为特殊的情况下,由于密封、冷藏、干燥等条件避开了空气的氧化和细菌的腐蚀,其硬体和软体几乎未遭受变化,可以比较完整地保存下来。例如猛犸象(第四纪冰期西伯利亚冻土层中于1901 年发现,其生存于距今25000年以前,不仅骨骼完整,连皮、毛、血肉,甚至胃中食物都保存完整)(图1-10 之3,4)。又如我国抚顺煤田古近系抚顺群(始新世至渐新世)琥珀中常见保存完整的蚊、蜂和蜘蛛等昆虫化石(图1-10 之1)。此外,由于气候干燥使生物体失去水分而被保存为干尸(木乃伊)。

(二)模铸化石

是生物遗体在底质或围岩中留下的各种印痕和复铸物。虽然并非实体本身,但能反映生物体的主要特征。按其与围岩的关系主要有:

◎印痕:专指生物死后,遗体沉落在松软细密底层上留下的印痕。生物遗体已损毁消失。常见的印痕化石有植物叶片、动物触角、腔肠动物的水母等(图1-12)。

图1-12 云南澄江下寒武统的印痕化石及其软体复原图

(据侯先光等,1989)

1.动物软体印痕化石;

2.动物软体复原图

◎印模:主要指生物硬体(如贝壳等)在围岩上印压的模。可分外模和内模(图1-13)。外模是硬体外表的印模;内模是硬体内表的印模。印模化石都能反映原生物的形态构造特征,但其上的纹饰构造则与原生物表面凹凸相反。

◎核:核化石含有整体之意,能反映生物形态、大小、纹饰等特征。核有内核、外核之分。有的生物如双壳类,闭合的双壳中软体腐坏消失留下的空间,为泥沙所填充,形成与原空间形状大小相等的完整实体,是为内核。内核的表面亦即内模。同样,如果壳内空间尚未充填而其空间与原壳空间同形等大,此空间若再被填充,围岩上原印压的外模,反印于填充物之上,即形成与原壳形状大小一致而成分均一的整体,称为外核,亦可称为复型,即原壳体的复型(图1-14)。

图1-13 腕足类的背壳及其印模化石

◎铸型:生物壳体埋于沉积物中,已形成外模和内核,然后壳体被溶蚀,所留空隙再被其他物质填充,即成为原来生物遗体的铸型。铸型与外核表面一致,皆与未变或变化实体化石相似,但未保存遗体内部构造,且成分与原生物完全不同(图1-14)。铸型与外核区别为后者不含内核。

图1-14 模铸化石及其形成过程

(据谭光弼等,1983)

1.双壳类壳瓣内部软体;2.埋藏后软体腐烂;3a.壳内被充填;4a.壳内空间被溶解,形成内核;3 b.壳内未充填,壳被溶蚀;4 b.整个空间被充填而形成外核(复型);3 c.壳内空间被充填;4 c.壳被溶蚀,且空隙填以其他物质,形成铸型

(三)遗迹化石

保留在岩层中的生物生活活动的痕迹和遗物称为遗迹化石。遗迹化石对于研究生物活动方式和习性,以及恢复古环境有重要意义。遗迹化石中脊椎动物的足迹是最吸引人的。从足迹上看是爪印还是蹄印,可推知该动物是食肉的还是食草的。我国曾发现不少足迹化石,如陕西神木东山崖侏罗系的禽龙足迹是最大的足迹化石之一(图1-15 之1)。无脊椎动物中蠕形动物的爬迹,舌形贝和蠕虫类的潜穴(图1-15之9,10),以及一些生物的觅食迹都是常见的遗迹化石。

图1-15 遗迹化石

(据夏树芳,1978;Ekdale et al.,1984;Seilacher,1970,1984)

1.足迹;2.行迹;3,4.拖迹;5.爬行迹;6~8.停息迹;9,10.潜穴迹

遗迹化石还包括动物的排泄物或卵(蛋化石)。各种动物的粪团、粪粒还可形成粪化石。鱼粪化石(属于粪团化石中的一种)比较常见,如贵州桐梓青杠哨白垩系中找到的鱼粪化石。鉴定粪化石可以根据形态、大小、物质成分进行,如螺旋状的粪化石就可能是具有螺旋瓣肠道的鱼类排泄物。爬行类和鸟类的蛋化石比较常见。我国白垩纪地层中的恐龙蛋化石是世界著名的,在山东莱阳地区以及广东南雄均发现成窝垒叠起来的恐龙蛋化石。我国黄土高原第四纪的土质层中也常发现完整的鸵鸟蛋化石。

自从人类出现以后,古代人类的劳动工具、文化遗迹等可归属于化石,但须指出这是指旧石器时代的遗物。例如,北京山顶洞人使用过的石器和骨器等。而新石器时代的遗物,一般属于文物考古的范畴。

(四)化学化石

地史时期生物有机质软体部分虽然遭受破坏未能保存为化石,但分解后的有机成分,如脂肪酸、氨基酸等仍可残留在岩层中。这些物质仍具有一定的有机化学分子结构,虽然常规方法不易识别,但借助于一些先进的手段和分析设备,仍能把它们从岩层中分离或鉴别出来,进行有效的研究。目前,人们已从岩层中分离出多糖、核苷酸、嘧啶、烃类和各种氨基酸。这些重大进步,推动了当代分子古生物学、古生物化学和生物成矿作用等新兴学科的迅速发展,对探索生命起源,阐明生物发展历史,以及对生物成因的矿产的探查和研究都有重要意义。

七、技能训练——化石保存类型识别

(一)目的要求

(1)通过化石标本的观察,初步掌握实体化石保存类型,了解遗迹化石的形态。

(2)通过化石标本的观察和模拟化石形成,加深对模铸化石的理解。

(二)训练内容

1.实体化石

①生物原体化石

②变质遗体化石

充填作用——脊椎动物骨骼

交代作用——a.钙化(三叶虫);b.硅化(珊瑚、硅化木);c.黄铁矿化(菊石);炭化作用(古植物、笔石)

2.模铸化石

①外模(三叶虫)

②内模(腕足类、双壳类)

③内核(腹足类)

④外核(石膏模型)

⑤铸型

3.遗迹化石

禽龙足迹、恐龙蛋

⑹ 轴承钢是什么材质的钢材

轴承钢又称高碳铬钢,含碳量Wc为1%左右,含铬量Wcr为0.5%-1.65%。轴承钢又分为高碳铬轴承钢、无铬轴承钢、渗碳轴承钢、不锈轴承钢、中高温轴承钢及防磁轴承钢六大类。

高碳铬轴承钢GCr15是世界上生产量最大的轴承钢,含碳Wc为1%左右,含铬量Wcr为1.5%左右,从1901年诞生至今100多年来,主要成分基本没有改变,随着科学技术的进步,研究工作任在继续,产品质量不断提高,占世界轴承钢生产总量的80%以上。以至于轴承钢如果没有特殊的说明,那就是指GCr15。

轴承钢是用来制造滚珠、滚柱和轴承套圈的钢。轴承钢有高而均匀的硬度和耐磨性,以及高的弹性极限。对轴承钢的化学成分的均匀性、非金属夹杂物的含量和分布、碳化物的分布等要求都十分严格,是所有钢铁生产中要求最严格的钢种之一。

(6)锰硅持仓1901扩展阅读:

GCr15轴承钢是一种合金含量较少、具有良好性能、应用最广泛的高碳铬轴承钢。经过淬火加回火后具有高而均匀的硬度、良好的耐磨性、高的接触疲劳性能。该钢冷加工塑性中等,切削性能一般,焊接性能差,对形成白点敏感性能大,有回火脆性。

GCr15轴承钢,含c0.95-1.05,Mn0.25-0.45,Si0.15-0.35。

综合性能良好.球化退火后有良好的切削加工性能.淬火和回火后硬度高而且均匀,耐磨性能和接触疲劳强度高.热加工性能好.含有较少的合金元素,价格比较便宜。

⑺ 小弟最近自己打磨一把刀 不知道淬火方法 谁能告诉一下么

金属热处理教程:

一 慨述

金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。

公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。

随着淬火技术的发展,人们逐渐发现冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。

1850~1880年,对于应用各种气体(如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。

二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳 ;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。

二 金属热处理的工艺

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。

加热是热处理的重要步骤之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。

加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度 ,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得需要的组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间或保温时间很短,而化学热处理的保温时间往往较长。

冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。

金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法,有激光热处理、火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属、复合渗等。

热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能 ,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。

例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性 ;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。

三 钢的分类

钢是以铁、碳为主要成分的合金,它的含碳量一般小于2.11% 。钢是经济建设中极为重要的金属材料。钢按化学成分分为碳素钢(简称碳钢)与合金钢两大类。碳钢是由生铁冶炼获得的合金,除铁、碳为其主要成分外,还含有少量的锰、硅、硫、磷等杂质。碳钢具有一定的机械性能,又有良好的工艺性能,且价格低廉。因此,碳钢获得了广泛的应用。但随着现代工业与科学技术的迅速发展,碳钢的性能已不能完全满足需要,于是人们研制了各种合金钢。合金钢是在碳钢基础上,有目的地加入某些元素(称为合金元素)而得到的多元合金。与碳钢比,合金钢的性能有显著的提高,故应用日益广泛。

由于钢材品种繁多,为了便于生产、保管、选用与研究,必须对钢材加以分类。按钢材的用途、化学成分、质量的不同,可将钢分为许多类:

(一). 按用途分类

按钢材的用途可分为结构钢、工具钢、特殊性能钢三大类。

1.结构钢:

(1).用作各种机器零件的钢。它包括渗碳钢、调质钢、弹簧钢及滚动轴承钢。

(2).用作工程结构的钢。它包括碳素钢中的甲、乙、特类钢及普通低合金钢。

2.工具钢:用来制造各种工具的钢。根据工具用途不同可分为刃具钢、模具钢与量具钢。

3.特殊性能钢:是具有特殊物理化学性能的钢。可分为不锈钢、耐热钢、耐磨钢、磁钢等。

(二). 按化学成分分类

按钢材的化学成分可分为碳素钢和合金钢两大类。

碳素钢:按含碳量又可分为低碳钢(含碳量≤0.25%);中碳钢(0.25%<含碳量<0.6%);高碳钢(含碳量≥0.6%)。

合金钢:按合金元素含量又可分为低合金钢(合金元素总含量≤5%);中合金钢(合金元素总含量=5%--10%);高合金钢(合金元素总含量>10%)。此外,根据钢中所含主要合金元素种类不同,也可分为锰钢、铬钢、铬镍钢、铬锰钛钢等。

(三). 按质量分类

按钢材中有害杂质磷、硫的含量可分为普通钢(含磷量≤0.045%、含硫量≤0.055%;或磷、硫含量均≤0.050%);优质钢(磷、硫含量含硫量≤0.030%)。

此外,还有按冶炼炉的种类,将钢分为平炉钢(酸性平炉、碱性平炉),空气转炉钢(酸性转炉、碱性转炉、氧气顶吹转炉钢)与电炉钢。按冶炼时脱氧程度,将钢分为沸腾钢(脱氧不完全),镇静钢(脱氧比较完全)及半镇静钢。

钢厂在给钢的产品命名时,往往将用途、成分、质量这三种分类方法结合起来。如将钢称为普通碳素结构钢、优质碳素结构钢、碳素工具钢、高级优质碳素工具钢、合金结构钢、合金工具钢等。均≤0.040%);高级优质钢(含磷量≤0.035%、

四 金属材料的机械性能

金属材料的性能一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括机械性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。

在机械制造业中,一般机械零件都是在常温、常压和非强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为机械性能(或称为力学性能)。金属材料的机械性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。常用的机械性能包括:强度、塑性、硬度、韧性、多次冲击抗力和疲劳极限等。下面将分别讨论各种机械性能。

1. 强度

强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。由于载荷的作用方式有拉伸、压缩、弯曲、剪切等形式,所以强度也分为抗拉强度、抗压强度、抗弯强度、抗剪强度等。各种强度间常有一定的联系,使用中一般较多以抗拉强度作为最基本的强度指标。

2. 塑性

塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不破坏的能力。

3. 硬度

硬度是衡量金属材料软硬程度的指标。目前生产中测定硬度方法最常用的是压入硬度法,它是用一定几何形状的压头在一定载荷下压入被测试的金属材料表面,根据被压入程度来测定其硬度值。

常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和维氏硬度(HV)等方法。

4. 疲劳

前面所讨论的强度、塑性、硬度都是金属在静载荷作用下的机械性能指标。实际上,许多机器零件都是在循环载荷下工作的,在这种条件下零件会产生疲劳。

5. 冲击韧性

以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。

五 退火--淬火--回火

(一).退火的种类

1. 完全退火和等温退火

完全退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的各种碳钢和合金钢的铸,锻件及热轧型材,有时也用于焊接结构。一般常作为一些不重要工件的最终热处理,或作为某些工件的预先热处理。

2. 球化退火

球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具,量具,模具所用的钢种)。其主要目的在于降低硬度,改善切削加工性,并为以后淬火作好准备。

3. 去应力退火

去应力退火又称低温退火(或高温回火),这种退火主要用来消除铸件,锻件,焊接件,热轧件,冷拉件等的残余应力。如果这些应力不予消除,将会引起钢件在一定时间以后,或在随后的切削加工过程中产生变形或裂纹。

(二).淬火

为了提高硬度采取的方法,主要形式是通过加热、保温、速冷。最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。

(三).回火

1. 降低脆性,消除或减少内应力,钢件淬火后存在很大内应力和脆性,如不及时回火往往会使钢件发生变形甚至开裂。

2. 获得工件所要求的机械性能,工件经淬火后硬度高而脆性大,为了满足各种工件的不同性能的要求,可以通过适当回火的配合来调整硬度,减小脆性,得到所需要的韧性,塑性。

3. 稳定工件尺寸

4. 对于退火难以软化的某些合金钢,在淬火(或正火)后常采用高温回火,使钢中碳化物适当聚集,将硬度降低,以利切削加工。

六 常用炉型的选择

炉型应依据不同的工艺要求及工件的类型来决定

1.对于不能成批定型生产的,工件大小不相等的,种类较多的,要求工艺上具有通用性、

多用性的,可选用箱式炉。

2.加热长轴类及长的丝杆,管子等工件时,可选用深井式电炉。

3.小批量的渗碳零件,可选用井式气体渗碳炉。

4.对于大批量的汽车、拖拉机齿轮等零件的生产可选连续式渗碳生产线或箱式多用炉。

5.对冲压件板材坯料的加热大批量生产时,最好选用滚动炉,辊底炉。

6.对成批的定型零件,生产上可选用推杆式或传送带式电阻炉(推杆炉或铸带炉)

7.小型机械零件如:螺钉,螺母等可选用振底式炉或网带式炉。

8.钢球及滚柱热处理可选用内螺旋的回转管炉。

9.有色金属锭坯在大批量生产时可用推杆式炉,而对有色金属小零件及材料可用空气循环加热炉。

阅读全文

与锰硅持仓1901相关的资料

热点内容
淘宝优惠券佣金插件 浏览:811
邮政分公司金融岗位 浏览:592
优灏金融服务费 浏览:968
股转协议股票 浏览:409
网上银行理财产品论文 浏览:516
别人股票涨自己的股票不涨 浏览:315
以为杠杆培育新动力 浏览:221
铁路总公司是全球最大非金融公司 浏览:792
金融服务专业属于什么类 浏览:364
基金持仓越来越多 浏览:563
杠杆系数说法 浏览:699
建信金融资产投资有限公司电话 浏览:467
微金所是什么理财产品 浏览:997
铼本股票 浏览:499
pp基金官方理财下载 浏览:514
萨斯病毒股票 浏览:9
高杠杆之殇华为员工落泪事件 浏览:712
房贷金融服务费合不合法 浏览:5
11月钢管价格会回落吗 浏览:18
伊利股东刘春海 浏览:590