⑴ 哪位详细讲解一下 滑轮和杠杆的关系
两者都是简单机械,有着省力和改变力的方向的优点,二者的本质都是一样的;不同点是滑轮能连续改变力的方向和大小,而杠杆则只能移动一定距离和方向
⑵ 请写出杠杆 齿轮 滑轮 轮轴 斜面的工作原理并举例说明生活中常见的物品
杠杆的工作原理,省力就会费了距离,费力就会省了距离。公式是 阻力*阻力臂=动力专*动力臂
生活中常见的多了,初中物理属课本就有,初中的物理题也有,简单举两个,翘铁钉时用的那个工具,开啤酒的起瓶器。
齿轮 滑轮 轮轴,其实都是杠杆的变形,用的公式仍然是杠杆的公式,只是形状不同
我举一下例子吧,比如滑轮,有定滑轮和动滑轮,对于定滑轮,其实就是滑轮转动中心就是“杠杆”的支点,动力和阻力到哪里的距离都是滑轮的半径,所以,定滑轮不省力,只改变力的方向(比如要让物体往上,本来没有滑轮只能往上用力,有了定滑轮,往下用力就可以让物体往上了)
轮轴,就是一个大轮和一个小轮固定在一个轴上,一转同时转。那么,那轴就是“杠杆”的支点,而动力和阻力到轴的距离不同,用力就不一样
比如我用大轮提物体,用小轮拉线,那么就是费力了
但是齿轮工程上一般利用的是两个接触的齿轮线速度一样,传动力的同时传速度
斜面的工作原理,我们可以设想一个工作场景,如果没有斜面,要搬一个东西上车的后备箱,至少要用和物重一样大的力,而用了斜面,我们只需要用比它的摩擦力大一点的力就可以让物体上到后备箱的高度,省力但也费了距离。
⑶ 杠杆,滑轮,斜面,齿轮,哪一种是不能省力的
那要分情况的, 杠杆的力臂足够长时省力, 滑轮组成的滑轮组在以上三者中最省力版。 杠杆是一种在实际生权活中应用十分广泛的工具,其实就是个变形的天平 而斜面是一些建筑工地时使用的工具,非常省力,之所以称之为斜面,就是因为它的两个端点可以构造出一个直角三角形,它的物理模型是个斜三角形
⑷ 滑轮和杠杆一样么
可以说一样,也可以说不一样。
先看概念:
在生活中根据需要,杠杆可以做成直的,也可以做成弯的。一根硬棒,在力的作用下如果能绕着固定点转动,这根硬棒就叫杠杆。
因此,可以说滑轮是有杠杆变形而成的。都遵:循动力臂×动力=阻力臂×阻力,即L1F1=L2F2的平衡条件。
滑轮中分定滑轮和动滑轮,定滑轮不省力,但可以改变力的方向;动滑轮省力但不省距离。所以说定滑轮是等臂杠杆,动滑轮是省力杠杆。
我是因为最近考试在复习,纯粹个人理解(原创的!)也许不是很专业,不要介意哈。
⑸ 杠杆、滑轮、轮轴之间有什么关系
都是简单机械,滑轮和轮轴都是变形的杠杆,定滑轮是相当于等臂杠杆,动滑轮相当于动力是阻力臂二倍的杠杆,轮轴也相当于动力臂大于阻力臂的杠杆.
⑹ 杠杆和滑轮这两种简单的机械有什么共同规律
好完了吗?两种机械的吧,像参谋点了吗?他们都是自己用的的
⑺ 杠杆,轮轴,滑轮,杠杆,车上的大齿轮和小齿轮是什么类型
都是简单机械
⑻ 关于杠杆和滑轮的知识点。。
杠杆 、滑轮知识点总结李伟志的工作室杠杆滑轮知识点总结
1.杠杆:一根在力的作用下能绕着固定点转动的硬 棒就叫杠杆。
2.什么是支点、动力、阻力、动力臂、阻力臂?
(1)支点:杠杆绕着转动的点(o)
(2)动力:使杠杆转动的力(F1)
(3)阻力:阻碍杠杆转动的力(F2)
(4)动力臂:从支点到动力的作用线的距离(L1)。
(5)阻力臂:从支点到阻力作用线的距离(L2)
3.杠杆平衡的条件:动力×动力臂=阻力×阻力臂.或写作:F1L1=F2L2 或写成 。这个平衡条件也就是阿基米德发现的杠杆原理。
4.三种杠杆:
(1)省力杠杆:L1>L2,平衡时F1<F2。特点是省力,但费距离。(如剪铁剪刀,铡刀,起子)
(2)费力杠杆:L1<L2,平衡时F1>F2。特点是费力,但省距离。(如钓鱼杠,理发剪刀等)
(3)等臂杠杆:L1=L2,平衡时F1=F2。特点是既不省力,也不费力。(如:天平)
5.定滑轮特点:不省力,但能改变动力的方向。(实 质是个等臂杠杆)
6.动滑轮特点:省一半力,但不能改变动力方向,要费距离.(实质是动力臂为阻力臂二倍的杠杆)
7.滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一。
8.实际滑轮组:机械效率η = W有用功/W总功 = Gh/Fs = G / nF,n为承担物重的绳子段数。
9.忽略绳重和摩擦的滑轮组:η =G物*h /(G物*h+G动*h) = G /(G +G动),
拉力:F=(G +G动)/n
⑼ 杠杆和滑轮定义以及它们的作用
物理学中把在力的作用下抄可以围绕固定点转动的坚硬物体叫做杠杆
滑轮是一个周边有槽,能够绕轴转动的小轮。由可绕中心轴转动有沟槽的圆盘和跨过圆盘的柔索(绳、胶带、钢索、链条等)所组成的可以绕着中心轴转动的简单机械叫做滑轮。
杠杆是分省力杠杆(动力臂大于阻力臂)和费力杠杆(阻力臂大于动力臂)
定滑轮不省力,但改变力的方向(不省功)
动画轮省力,但不改变力的方向也费距离(不省功)
滑轮组结合了定滑轮和动滑轮的优点即改变力方向也省力,但也费距离,省力的多少要看绕在动滑轮的绳子段数多少(不省功)
⑽ 杠杆、斜面、滑轮、轮轴、定滑轮、动滑轮的原理
一、杠杆原理
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。
即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
二、斜面原理
斜面(inclined plane)是一种倾斜的平板,能够将物体以相对较小的力从低处提升至高处,但提升这物体的路径长度也会增加。斜面是古代希腊人提出的六种简单机械之中的一种。
假若斜面的斜率越小,即斜面与水平面之间的夹角越小,则需施加于物体的作用力会越小,但移动距离也越长;反之亦然。假设移动负载不会造成能量的储存或耗散,则斜面的机械利益是其长度与提升高度的比率。
在日常生活中,时常会使用到斜面。行驶车辆的坡道是一种常见的斜面;卡车装载大型货物时,常会在车尾斜搭一块木板,将货物从木板上往上推,所应用的也是斜面的理论。
三、滑轮原理
滑轮主要的功能是牵拉负载、改变施力方向、传输功率等等。多个滑轮共同组成的机械称为“滑轮组”,或“复式滑轮”。滑轮组的机械利益较大,可以牵拉较重的负载。滑轮也可以成为链传动或带传动的组件,将功率从一个旋转轴传输到另一个旋转轴。
四、轮轴原理
轮轴的实质是可以连续旋转杠杆.使用轮轴时,一般情况下作用在轮上的力和轴上的力的作用线都与轮和轴相切,因此,它们的力臂就是对应的轮半径和轴半径.
由于轮半径总大于轴半径,因此当动力作用于轮时,轮轴为省力费距离杠杆(下面的第一幅图),实际的例子:有自行车脚踏与轮盘(大齿轮)是省力轮轴.当动力作用于轴上时,轮轴为费力省距离杠杆,实际的例子有:自行车后轮与轮上的飞盘(小齿轮)、吊扇的扇叶和轴都是费力轮轴的应用。
五、定滑轮原理
使用时,滑轮的位置固定不变;定滑轮实质是等臂杠杆,不省力也不费力,但可以改变作用力方向.杠杆的动力臂和阻力臂分别是滑轮的半径,由于半径相等,所以动力臂等于阻力臂,杠杆既不省力也不费力。
定滑轮不能省力,而且在绳重及绳与轮之间的摩擦不计的情况下,细绳的受力方向无论向何处,吊起重物所用的力都相等,因为动力臂和阻力臂都相等且等于滑轮的半径。
六、动滑轮原理
动滑轮省1/2力多费1倍距离,这是因为使用动滑轮时,钩码由两段绳子吊着,每段绳子只承担钩码重的一半,而且不能改变力的方向。实质是个动力臂(L1)为阻力臂(L2)二倍的杠杆:图中,O是支点,F1是提升物体的动力,F2是物体的重力(也可理解为不用机械时提升物体用的力)。