① 杠杆原理是什么
初中物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆。
② 化学里的杠杆原理怎么来的该怎么用 请把两个问题分开讲解,
在二组分系统相图的应用中用杠杆原理计算两相的组成.
已知两组分A与B混合后的版A的摩权尔分数xA,以及混合后两相中A与B总物质的量分别为n1与n2..T--x图中的梭形区两相平衡,在T轴上画一条水平线(即给定一个温度),水平线与梭形区相交于两点(设为D点与E点),可以就此读出组分A在两相中的摩尔分数(即X1与x2),也由xA画一条竖直线与DE相交于一点C.
就组分A来说,有以下的公式成立:n1(xA-x1)=n2(x2-xA)或者n1×CD=n2×DE
就是把图中的DE比作一个以C点为支点的杠杆,一相的物质的量乘以CD等于另一相的物质的量乘以CE,这个关系就是杠杆原理
我没有写推理的过程,推理的原理就是混合前后各组分自己的物质的量不变,有兴趣可以看看物理化学相平衡那一章.
③ 怎样从数学的角度解释杠杆原理最好有图示
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
中文名
杠杆原理
外文名
lever principle
别 称
杠杆平衡条件
表达式
F1· L1=F2·L2.
提出者
阿基米德
提出时间
公元前245年左右
应用学科
物理科学
适用领域范围
杠杆力学
适用领域范围
建筑,物理,机械
原理提出
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”,这句话便是说杠杆原理。
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
阿基米德
这些公理是:
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替
(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的船只顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在中国历史上也早有关于杠杆的记载。战国时代的墨子曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的。
概念分析
编辑
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2这样就是一个杠杆。
动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
④ 杠杆原理是怎样做出的
原理简介
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”这句话有着阿基米德严格的科学根据。(阿基米德是古希腊著名的科学家,许多问题在阿基米德的头脑下都解决了)
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅杆顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×l1=F2×l2这样就是一个杠杆。动力臂延伸杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力距);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
希望能帮到你,麻烦给“好评”
⑤ 杠杆原理的物理学基本原理是什么
杠杆原理的物理学基本原理是[物理学】--[力学]--【静力学】---【物体的平衡】---【带固定转动轴的物体的平衡】
力矩平衡:一个物体如果处于平衡状态,那么,它受到的外力的合力为0.外力的力矩的总和为0、(力矩的代数和为0.
顺时针的力矩(为负)之和等于逆时针(为正)之和)
⑥ 经济学中杠杆原理是什么
济学中也有杠杆原理这一说。分别是经营杠杆,财务杠杆,复合杠杆.其中经回营杠杆是基答础,财务杠杆最重要,复合杠杆是前两者的和, 经营杠杆是由于固定成本的存在,导致销售量增加一个较小的幅度时,EBIT增加一个较大的幅度。
财务杠杆是由于固定财务费用如利息的存在,经济中的杠杆主要通过负债,用较少的本金支配更多的资产,撬动更大利润。
具体的经济杠杆有:政府杠杆、地方政府债务;宏观杠杆、银行资产对GDP占比;
企业财务杠杆:企业负债。财务管理中的杠杆效应有三种形式,
杠杆的本质是通过负债把社会闲散资源集中起来,投入到生产领域,获取更大的回报,拉动经济增长。
即经营杠杆、财务杠杆、复合杠杆。在经济学里,杠杆有广义和狭义之分,狭义的指“财务杠杆”。一个企业在自有资金不足... 银行的钱还是那么多,只是多了两层债务关系而已。 债是什么,债就是钱。
财务杠杆是公司财务管理的重要分析工具,公司管理层可以利用财务管理中的几种杠杆,在投融资决策方面做好“度”的把握,并进行相应评估。
控制经营杠杆的途径企业一般可以通过增加销售金额、降低产品单位变动成本、降低固定成本比重等措施使经营杠杆率下降,降低经营风险。
⑦ 化学里的杠杆原理怎么来的
化学里的杠杆原理怎么来的
在二组分系统相图的应用中用杠杆原理计算两相的组成.
已知两组分A与B混合后的A的摩尔分数xA,以及混合后两相中A与B总物质的量分别为n1与n2..T--x图中的梭形区两相平衡,在T轴上画一条水平线(即给定一个温度),水平线与梭形区相交于两点(设为D点与E点),可以就此读出组分A在两相中的摩尔分数(即X1与x2),也由xA画一条竖直线与DE相交于一点C.
就组分A来说,有以下的公式成立:n1(xA-x1)=n2(x2-xA)或者n1×CD=n2×DE
就是把图中的DE比作一个以C点为支点的杠杆,一相的物质的量乘以CD等于另一相的物质的量乘以CE,这个关系就是杠杆原理