導航:首頁 > 投資金融 > 互聯網金融公司風控發審要點

互聯網金融公司風控發審要點

發布時間:2021-07-08 06:00:59

『壹』 互聯網金融風控模型都有哪些

以P2P網貸為例


一、銷售環節


了解客戶申請意願和申請信息的真實性,適用於信貸員模式,風控關鍵點。


風控關鍵點:不同類型的借款申請調用不同的信用評分規則引擎。


二、貸後存量客戶管理環節


存量客戶授信調整是存量客戶管理中的重要一環


風控關鍵點:


1、違約情況觀察,比如是否發生早期逾期,連續多期不還欠款、聯系方式失效等

2、信息關聯排查,比如存量客戶中是否有與新增的黑名單、灰名單數據匹配


三、貸後逾期客戶管理環節


還款意願差和還款能力不足是客戶逾期的主要原因,這個環節主要涉及逾期客戶管理與失聯客戶管理


風控關鍵點:


1、催收模型、策略優化。

2、失聯客戶識別與修復失聯客戶信息。


四、資金流動性管理環節


流動性風險是P2P網貸平台的主要風險,跑路P2P網貸平台的一個重要原因就是發生了擠兌。大數據下的流動性管理其實是實時BI的一個應用。傳統BI數據T+1,大數據是實時BI。


風控關鍵點:


1、資金維度

2、業務維度


『貳』 在金融公司工作的人來說說風控怎麼做。

風控並不是個新職業,不過近幾年它的發展勢頭變得越來越好。無論在傳統金融還是互聯網金融領域,它都成了一個緊俏的職業。這跟近幾年金融領域形態的多樣化有關,用戶對於風險控制變得越來越關注。

總體來說,風控崗位涉及到的工作包括業務審查(業務發生前的審核,通常未通過審核,業務不能執行)、風險監測(業務發生後的持續風險監測,包括預警及應對等)以及業務綜合管理(數據的統計分析等)。

一、工作內容(在銀行、保險、信託期貨、P2P互聯網金融平台內部,風控的工作側重不盡相同。)

1.銀行

相比其他類型的金融機構,銀行的風險管理部門更為成熟。「巴塞爾委員會」1988年7月制定的《巴塞爾協議》里為全球商業銀行確立了明確的風險管理標准,確定了管理哪幾類風險。尤其對怎麼管控信用風險、市場風險、操作風險說得非常清晰。

貸款業務是占銀行風控日常工作比重最高的一類業務。處於中端的風控部門往往在客戶閱讀貸款細則時就開始進入風險審核,看貸款對象的個人風險評估是否符合要求,經過風險評估後的業務才會被提交到更高管理處審批—也就是說,風控的工作存在於交易的過程中。

銀行風控的這種運作方式也成為許多金融機構風險管理的母本。比如保險行業大多是參照銀行的做法。

2.期貨、信託、小額貸款、融資租賃企業

從風險管理的角度來說,期貨、信託、小額貸款、融資租賃企業都算是比較新興的類型。它們的風險管理以風險為核心,側重信用風險、操作風險、市場風險、交易對手風險等等。

這些行業的新興之處還體現在業務的復雜和創新需求上。比如信託,以房地產作為信託產品和以汽車作為信託產品是不一樣的,某種程度上來說每個項目都需要開發一套創新的金融產品。當一個創新產品出來的時候,這個產品是不是能變成一隻基金,或者變成某一種產品推到市場上去,它們的風險管理部就要進行審核。這種情況下,風險管理部需要判斷這個新產品的風險是否可控?風控敞口有多大?萬一出現問題,項目坍塌了,儲戶或者是投資者來向公司要錢時,剛性兌付的資金壓力有多大?有多少可能性這個項目就有多少可能收不回來錢?

風險管理部對於新產品的審批意見非常重要,如果風險管理部或風險管理委員會不批的話,這個新業務真的可能會被否掉。這是一個權力很大的部門。

3.網上個人信貸(P2P)

相對傳統金融領域來說,P2P還處於初期階段,因此風險管理工作可能並不是很完善。有一些企業在做這類金融產品的時候,可能只是從金融企業挖一兩個人來就開始管理風險,他們的風險管理主要集中在信用風險審核。

二、崗位要求(論傳統金融還是互聯網金融,風控都算是一個硬性技能要求比較高的崗位,但根據工作內容的不同,對公司人的要求也有所不同。)

在傳統金融領域及P2P中,金融行業相關的知識和經驗是很重要的。

對於畢業生來說,盡管大部分金融機構和企業都抱著一種「反正都是白紙,我可以用我們的體系來培養」的觀念,但如果是金融專業同時具備一些比如FRM金融風險管理師、CFA特許金融分析師等專業證書會更有競爭力。

對於社會招聘來說,風控人才主要來自兩個渠道,一個是從其他類似機構找人;另一個則來自於大會計事務所或咨詢公司,後者出來的公司人往往有一些金融企業審批或企業風控的外部服務經驗。

三、工作狀態及挑戰

不同類型的金融機構及企業的風控因為其職能的不同,所呈現出的工作狀態會有所不同。

通常,一些大型銀行的風控部門由於業務穩定,規模較大,人員充足,因此工作負荷不大,屬於行業中工作壓力較小的部門。不過一些跨國銀行的風控職能往往集中在國外總部或區域中心,中國的風控部門更多地扮演執行的角色,個人的能力體現和成長空間都會受到一定的局限。

在一些大型金融機構,風控的工作重點在於如何將領導的風險偏好轉化為合理的風控工作指標,凸顯自身價值。

一些中小型金融企業,以及非銀行金融機構的風控,由於業務類型復雜、創新性高、變化大,原本就不夠充沛的風控人員,往往需要承擔更大的工作負荷。這類風控人員的職能壓力往往來自於不僅要控制風險,同時還要提高工作效率,即:不錯殺好項目,不漏殺壞項目,同時也不能延誤業務時機。這種時候還有可能受到來自業務部門的壓力,如何在業務發展和風險管理之間找到平衡,如何在壓力下,堅持風控的專業判斷,都是一個好的風控人需要考慮的。相對來說,這類企業的風控人員壓力更大,能力的提升也更快。

不管是傳統金融還是互聯網金融都面臨著不斷發展和迭代的挑戰,這使得風控人員必須保持很強的學習能力和好奇心。

四、職業發展方向

在大部分金融機構里,風控崗位的職業晉升往往通向首席風險官,最終可能成為銀行的副行長,或是其他金融機構的副總經理,主要還是偏重風險管理和控制類的工作。

五、薪酬狀況

根據統計數據表明,在金融行業各職能部門的薪酬漲幅里,盡管中後台部門仍然沒有前台部門的15%高,大約在5%至10%之間,不過風控在中後台其他職能部門中算是漲幅比較高的。

之所以能有這樣比較有優勢的漲薪,主要有兩方面原因。原因之一在於人才貯備不足。過去很多人都沒能認識到風控工作的重要性,所以大家不太願意入行,另一方面這又是一個需要專業技能的工作,因此整體而言從業者不多。原因之二是因為這兩年互聯網金融發展非常迅速,大大小小的P2P平台的出現催生了風險控制人才的需求。加上銀行、保險、期貨、信貸、小貸、小微貸、PE、VC這些行業本身也都有很大的風控人才需求,所以使得這類人才出現缺口。這些企業之間的人才競爭也把風控人員的收入拉到了一個比較高的位置。

從具體行業來說,銀行業風控的薪資漲幅平均在5%至10%之間;保險業相對平穩,因為保險業圈子狹窄,風控流動率較小,薪資漲幅不大。證券基金業內中資外資風控的薪資漲幅有非常大的差異,所以沒法得出一個明確的參考標准。P2P行業的風控人員大多是來自銀行或是同行業。在跳槽的過程中,他們的薪資會得到一個比較大的提升,增長幅度可達30%至50%。

從區域上來說,風控人員的需求主要集中在一線城市。二三線城市需求量雖大,但薪酬偏低。

一線城市有5年到10年經驗的銀行風控人員平均年薪在30萬到60萬元之間;保險業有10年以上工作經驗的風控在外企的薪資約為70萬元,在本土企業為60萬元;證券基金業有5年至8年工作經驗的風控經理在本土企業的年薪一般在30萬至80萬元之間

『叄』 互聯網公司風控流程如何梳理

這個很復雜的,建議您上貸出去、網貸天眼、星火互聯網金融研究院看看,尤其是星火錢包的,有一套嚴格風控體系,有博士級別寫的評估報告。

『肆』 互聯網金融如何做風控

互聯網如何做好風控:

(1)先要了解風控體系的建立是打算以哪種形態存在;線上審核、線下審核還是線上線下結合模式。
不建議純線上風控審核,基本目前市場還是要以線上評分機制與線下風控結合為主,如果純線上風控審核,對於風控而言難度還是相當大的,那麼真實性、道德風險、合規性等都需要防範的,一旦投資者的資金出現問題,止損難度和費用都會相應增加,純服務平台,是否承墊付投資人損失,那麼對平台會有相當大的預期風險,如果不承諾墊付,那麼市場投資者的粘合度、信任度等問題就需要解決,對於互聯網金融平台發展勢必會受阻,需要承受的是長期的市場適應能力,當然也不排除有些:非結構化產品特殊可行性模式;

(2)互聯網金融也是一種傳統模式的顛覆,傳統的金融模式:投資者、服務平台(P2P)、融資者,對於一端的投資來分析,互聯網金融公司,是一個快捷有效的一個投資方式,操作的安全性、可控性、穩定性比較重要了;對於另一端借款分析,是否會有信用風險和道德風險出現,對於一個金融企業來說就至關重要,還是一個『風控點』的問題。

(3)互聯網金融公司應考慮進入市場方向、目標客戶群體,打算以金融產品為市場導向,再去考慮風控掌握方向,先要把戰略目標確定了,才能去確定有效的風控體系建立、市場推廣方向等,現在就有很多家互聯網背景的公司,他們的風控方向,目標人群是明確的,當然他們的互聯網背景,也為他們帶來了很多的優勢,就是多年的用戶和商戶的數據累計,可以明確的進行數據分析、軌跡消費習慣測算,O2O供應鏈環節把控、產業鏈上下游控制等等的防範措施,這就是他們的風控把握明確方向。
擴展閱讀:

風險管理:是指如何在項目或者企業在一定的風險的環境里,把風險減至最低的管理過程。它的基本程序包括風險識別、風險估測、風險評價、風險控制和風險管理效果評價等環節。

風險控制:是指風險管理者採取各種措施和方法,消滅或減少風險事件發生的各種可能性,或者減少風險事件發生時造成的損失。所以其實風險控制是風險管理中的一個環節。

『伍』 互聯網金融做什麼的

互聯網金融(ITFIN)是指傳統金融機構與互聯網企業利用互聯網技術和信息通信技術實現資金融通、支付、投資和信息中介服務的新型金融業務模式。

互聯網金融不是互聯網和金融業的簡單結合,而是在實現安全、移動等網路技術水平上,被用戶熟悉接受後(尤其是對電子商務的接受),自然而然為適應新的需求而產生的新模式及新業務。

互聯網金融(ITFIN)就是互聯網技術和金融功能的有機結合,依託大數據和雲計算在開放的互聯網平台上形成的功能化金融業態及其服務體系。

包括基於網路平台的金融市場體系、金融服務體系、金融組織體系、金融產品體系以及互聯網金融監管體系等,並具有普惠金融、平台金融、信息金融和碎片金融等相異於傳統金融的金融模式。

(5)互聯網金融公司風控發審要點擴展閱讀

互聯網金融行業要持續、健康、穩定的發展,建立嚴格、完善的風控體系,形成貸前、貸中、貸後流程管理和決策系統是關鍵。國內互聯網金融公司的風控水平與歐美發達國家相比還有一定的差距。

互聯網金融的新拐點既是挑戰也是機遇。無論是從業者還是監管者,都已經意識到了這樣一個問題:互聯網金融行業亟需革新,而提升風控能力,成為了推動互聯網金融革新,加速國內互聯網金融行業健康、有序發展的關鍵步驟。

隨著中國互聯網金融不斷向縱深發展,P2P行業在本土化運營過程中出現諸多水土不服的現象。這在很大程度上與政府的介入和監管不足,相關法律法規出現缺位有關。所以在互聯網金融的風控上,政府以及監管機構首當其沖,必須通過制定相關政策法規為行業樹立標准。

『陸』 互聯網金融風控模型,需要多大的數據

1、基於某類特定目標人群、特定行業、商圈等做風控

由於針對特定人員、行業、商圈等垂直目標做深耕,較為容易建立對應的風險點及風控策略。
例如:
針對大學生的消費貸,主要針對大學生人群的特徵
針對農業機具行業的融資擔保。
針對批發市場商圈的信貸。

2、基於自有平台身份數據、歷史交易數據、支付數據、信用數據、行為數據、黑名單/白名單等數據做風控

身份數據:實名認證信息(姓名、身份證號、手機號、銀行卡、單位、職位)、行業、家庭住址、單位地址、關系圈等等。
交易數據/支付數據:例如B2C/B2B/C2C電商平台的交易數據,P2P平台的借款、投資的交易數據等。
信用數據:例如P2P平台借款、還款等行為累積形成的信用數據,電商平台根據交易行為形成的信用數據及信用分(京東白條、支付寶花唄),SNS平台的信用數據。
行為數據:例如電商的購買行為、互動行為、實名認證行為(例如類似新浪微博單位認證及好友認證)、修改資料(例如修改家庭及單位住址,通過更換頻率來確認職業穩定性)。
黑名單/白名單:信用卡黑名單、賬戶白名單等。

3、基於第三方平台服務及數據做風控

互聯網徵信平台(非人行徵信)、行業聯盟共享數據(例如小貸聯盟、P2P聯盟) FICO服務
Retail Decisions(ReD)、Maxmind服務
IP地址庫、代理伺服器、盜卡/偽卡資料庫、惡意網址庫等
輿情監控及趨勢、口碑服務。諸如宏觀政策、行業趨勢及個體案例的分析等等

4、基於傳統行業數據做風控

人行徵信、工商、稅務、房管、法院、公安、金融機構、車管所、電信、公共事業(水電煤)等傳統行業數據。

5、線下實地盡職調查數據

包括自建風控團隊做線下盡職調查模式以及與小貸公司、典當、第三方信用管理公司等傳統線下企業合作做風控的模式。
雖然貌似與大數據無關,但線下風控數據也是大數據風控的重要數據來源和手段。

『柒』 銀行風控與互聯網金融風控區別在哪裡

紅象金融CEO林士強認為,銀行的風控模型的出發點主要是測量借款方的還款能力,即借得起多少錢和還得起多少錢,也就是對借款方做個評級。一般來講,模型都包含了兩部分的評判,即客觀性的和主觀性的。客觀性的主要是數據類型,能量化的。如公司的年度審計財務報告,銀行流水,繳稅金額等,這些數據放在已設定好的模型里就能給出個分數或等級,做為參考。但光靠客觀數據還不夠,比如說這公司所在的行業是淘汰落後的行業(如鋼鐵、水泥等),那麼評級可能需要有些降級,再比如說公司的管理人在該行業的經驗年限的長短,都會影響到這家公司的風險,所以這部分就得靠人為主觀的去做些調整。
互聯網金融風控主要分為三類:第一類也是較普遍的,大多數都還是參照銀行或金融機構的風控標准,再結合自己的數據基礎及模型做些調整,但大體上還是偏傳統方式的;第二類即是利用大數據的,目前這類都算是在嘗試階段,並只能做些貸款金額較小的業務,基本上都不敢大規模的放開來做;第三類是以互聯網思維來做風控,比如說有不少做大學生消費信貸的平台,利用了借款人的強關系網路,作為風控的一個重要評判標准之一。當然這在一定的小金額范圍內是能起到作用的,一般人也不希望借個幾千元不還然後被所有朋友、家長、老師等都知道,這個違約成本也太高了。但對選擇大學生市場的平台來說,本身就選擇了一個沒有主動收入來源和還款能力較低的群體,所以肯定會有一定的壞賬率的。現在整個市場也還沒經歷過一個完整的貸款周期,這種風控手段的有效性也還無法正確評估。

『捌』 常用的互聯網金融大數據風控方式有哪些

1:驗證借款人信息
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以通過藉助銀聯數據來驗證銀行卡號和姓名。
其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。

2:大數據分析提交的信息
大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸一般都是以線上申請為主的。
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相同、單位名稱相同、甚至居住的樓層和號碼都相同。
3:分析客戶的消費信息
從客戶的電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。
4:參考客戶的社會屬性和行為進行評估
參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高。經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。

5:調查客戶是否進入黑名單
市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。
涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。

『玖』 優秀的互聯網金融公司,都是怎麼玩大數據風控的

現在一提起互聯網金融行業、Fintech領域,人工智慧、大數據風控的熱度就直線飆升。許多交易規模比較大的互聯網金融公司都在努力發展大數據風控技術,以構建提供普惠金融服務的能力。
那麼,這些優秀的互聯網金融公司,都是怎麼玩大數據風控的呢?
陸金所:KYC 2.0系統
精準判斷投資者的風險承受能力
陸金所自成立起就引進國際領先的第四代風險管理系統,借鑒平安集團經驗,形成了成熟的風險管理數據模型。其近日又推出了KYC 2.0系統,力求通過大數據技術、機器學習以及金融工程等方法,建立完整的互聯網財富管理平台投資者適當性管理體系,在資金端對投資者進行「精準畫像」,並提供智能推薦服務。
據了解,KYC2.0系統在原有的保守、穩健、平衡、成長、進取五大類型基礎上對投資者風險承受力評估結果進行量化,每位用戶都會獲得專屬的風險承受能力分值,又稱「堅果財智分」,對投資者風險承受能力的判斷更精準。
點評:量化數據信息,進行大數據建模。
風控最好的數據還是金融數據,例如年齡、收入、職業、學歷、資產、負債等信用數據,這些數據同信用相關度高,可以反映用戶的還款能力和還款意願,這些數據因子在風控模型中必不可少,權重也很高,是風險評估最好的數據。
所以,陸金所以平安集團經驗為基礎運用到的大數據風控,使用的是圍繞用戶周圍的信用數據,這些數據的特點是和用戶的信用情況高度相關,可以作為一個重要因子進行錄入,對其個人進行打分,再對其進行個體分析,最終得到一個綜合評分,這就對用戶進行了一個精準的風險承受能力評判。
民貸天下:拓寬數據維度
實現純線上智能化服務
民貸天下基於穩健、安全、規范的風控理念,其風控部門確定了「風控從嚴」原則,設定了借款審查、貸中管理、貸後跟蹤等風控流程。目前,民貸天下正全力推進全智能化建設,構造一個完整的、從資產端到平台端的全鏈路大數據風控系統,通過對人工智慧、大數據分析、知識圖譜、區塊鏈等技術的運用,為平台運營及業務發展提供強大動力。
在傳統數據之外,民貸天下還不斷拓展數據維度,如在用戶授權下,對用戶社交數據、訪問時間、相關認證、通訊記錄等數據整合分析,並且與螞蟻金服、芝麻信用、前海徵信、同盾等第三方機構緊密合作,進一步豐富對用戶的數據畫像,使民貸天下的大數據風控系統更加精準,從而實現從客戶申請、受理、審核、授信、放款到貸中貸後管理等純線上智能化服務。
點評:拓寬數據維度,是對傳統風控的補充。
傳統風控模型已經不能適應復雜的現代風險管理環境,特別在數據信息錄入維度上,影響用戶信用評分的信息較多,很多都沒有引入到風險評估流程。而大數據風控可以提供全面的數據(數據的廣度),強相關數據(數據的深度),實效性數據(數據的鮮活度)。
民貸天下利用這樣的大數據風控,通過與第三方合作等方式,將內部數據以及原有數據打通和整合之後,就會影響風險評估結果,提升信用風險管理水平,客觀地反映用戶風險水平。這些多維度、全面的信息正是大數據風控的優勢所在,同時也是對傳統風控一個很好的補充,進一步實現智能化服務。
真融寶:以數據介質為主
構建數據和模型演算法的核心技術
真融寶以數據介質為主,利用分布式計算處理數據,以公眾互聯網的全網為平台,以全網收集的數據來補充內部網集成的數據。並且在用戶數據方面,對每個新進用戶建立一份電子檔案,對每名用戶投資需求進行了解登記,並對每一筆資金進行多重備份,形成動態的用戶資金數據。
除此之外,真融寶還利用大數據進行決策,將金融活動轉化為智能數據處理活動,降低人為因素的干擾,提高風險評估、分析和預警能力,大數據提供的信息使得真融寶的決策更加科學智能化,對於風控的精準度控制起到非常大的幫助作用。
點評:數據和模型演算法,可建立實時風險管理視圖。
大數據的數據採集和計算能力,可以幫助企業建立實時的風險管理視圖。藉助於全面多緯度的數據、自我學習能力的風控模型、實時計算結果、壞種子數據,真融寶可以通過大量的數據累積,能夠產生出非常有效的識別客戶的能力,提升量化風險評估能力。
數據、技術、模型、分析將成為信用風險評估的四個關鍵元素,其背後的力量就是大數據的技術和分析能力。真融寶利用大數據的風控能力,實時輸出風險因子信息,提高了風險管理的及時性。
一直以來,風控都是金融機構的生命線。從陸金所、民貸天下、真融寶這三家互聯網金融公司為例,預計在未來,可能每家做借貸類的互聯網金融公司都會發展出屬於自己的一套大數據風控體系,並且隨著互聯創業公司的業務數據越來越大,數據基礎會逐漸扎實。

閱讀全文

與互聯網金融公司風控發審要點相關的資料

熱點內容
銀行貸款金額怎麼說 瀏覽:338
招商安慶基金理財 瀏覽:553
地震對期貨的影響 瀏覽:703
魯能集團上市 瀏覽:316
貨幣去杠桿事件 瀏覽:264
鑫亞國際股票 瀏覽:174
外匯銷售電話話術 瀏覽:733
東方財富股份公司騙 瀏覽:544
新興鑄管股份有限公司地址 瀏覽:662
武漢光谷聯合產權交易所襄陽 瀏覽:282
上海地鐵二號線融資外資 瀏覽:333
沈陽有興業證券 瀏覽:818
公募基金金融機構免稅政策 瀏覽:501
郵政銀行理財最少多少 瀏覽:139
胡華勇國信證券簡歷 瀏覽:167
外匯1100盈利計算公式 瀏覽:591
浙商國際金融期貨 瀏覽:61
信和金融服務有限公司 瀏覽:954
綠豆公司股票 瀏覽:706
股票期貨書籍打包下載 瀏覽:439