導航:首頁 > 股市基金 > 黃金分割比值是

黃金分割比值是

發布時間:2021-06-14 20:53:00

Ⅰ 黃金分割比例

其比值約為0.618

設一個數列,它的最前面兩個數是1、1,後面的每個數都是它前面的兩個數之和。回例如答:1,1,2,3,5,8,13,21,34,55,89,144·····這個數列為「斐波那契數列」,這些數被稱為「斐波那契數」。

經計算發現相鄰兩個斐波那契數的比值是隨序號的增加而逐漸逼近黃金分割比。由於斐波那契數都是整數,兩個整數相除之商是有理數,而黃金分割是無理數,所以只是不斷逼近黃金分割。

(1)黃金分割比值是擴展閱讀:

黃金分割比例是使矩形最具美感的比例,即矩形的寬與高之比為1:1.618。在報紙版面設計中,黃金分割比例是最重要的美學參考數據。對開報紙版面的寬與高之比為1:1.4;四開報紙為1:1.5,比較接近黃金分割比例,因此符合讀者的審美需求。

在版面內設計的新聞圖框,一般也以接近這一比例為佳,常用的圖框比例有3:5、5:8、8:13等。當然,這一比例的矩形不是唯一具有美感的形,再加上版面設計中各種因素的影響,不應該也不可能把每條新聞都編排成符合這一比例的矩形。

Ⅱ 黃金分割的比例是多少

古希臘的畢達哥拉斯和他的學派在數學上有很多創造,著名的黃金分割就是他在專公元前6世紀發現的。

一天,畢達哥屬拉斯從一家鐵匠鋪路過,被鋪子中那有節奏的叮叮當當的打鐵聲所吸引,便站在那裡仔細聆聽,似乎這聲音中隱匿著什麼秘密。他走進作坊,拿出尺子量了一下鐵錘和鐵砧的尺寸,發現它們之間存在著一種十分和諧的關系。

回到家裡,畢達哥拉斯拿出一根線,想將它分為兩段。怎樣分才最好呢?經過反復比較,他最後確定按照1∶0.618的比例截斷最優美。

後來,德國的美學家澤辛把這一比例稱為黃金分割律。這個規律的意思是,整體與較大部分之比等於較大部分與較小部分之比。無論什麼物體、圖形,只要它各部分的關系都與這種分割法相符,這類物體、圖形就能給人最悅目、最美的印象。

中世紀後,黃金分割被披上神秘的外衣,義大利數學家帕喬利稱其為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。直到19世紀黃金分割這一名稱才逐漸通行。

Ⅲ 黃金比列的比值是多少

黃金分割漫談

分已知線段為兩部分,使其中一部分是全線段與另一部分的比例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。黃金分割、黃金分割數都被冠以「黃金」二字,說明了它們的重要性與應用上的廣泛性,同時也為它們平添了幾分神秘的色彩。著名天文學家開普勒稱黃金分割是「幾何學中的一大寶藏」,就讓我們揭開它的神秘面紗,共同來開采一下這座寶藏吧!

尋蹤探跡話名稱由來

最早對中末比有所了解的大約可追溯到畢達哥拉斯學派。該學派對正五邊形、正十邊形都很熟悉,並且把「五角星」作為成員聯絡標記,而這些圖形的作法與中末比是密切聯系的。如果相信畢達哥拉斯熟知正五邊形與五角星的作圖,那麼可以推知他已掌握了中末比。古希臘著名的數學家、天文學家歐多克索斯最早對中末比做了系統的研究,他在深入探究五角星性質時,曾驚嘆道:「中末比到底在這兒出現了!」對中末比的嚴格論述最早見於歐幾里德的《幾何原本》。到中世紀以後,中末比被披上更神秘的外衣,漸漸籠上了一層神秘的色彩。

文藝復興時期,中末比問題引起了人們廣泛的注意。1509年,義大利文藝復興重要人物之一帕喬里出版《神聖的比例》一書。書中系統介紹了古希臘中外比,並稱其為神聖比例。他認為世間一切事物都須服從這一神聖比例的法則。開普勒稱中末比為「比例分割」,他寫道:「畢達哥拉斯定理和中末比是幾何中的雙寶,前者好比黃金,後者堪稱珠玉。」他是把黃金之喻給了畢達哥拉斯定理,而用珠玉來形容了中末比。最早正式在書中使用黃金分割這個名稱的是歐姆(以歐姆定律聞名的G.S.歐姆之弟)。在他1835年出版的第二版《純粹初等數學》一書中首次使用了這一名稱。到19 世紀以後,這一名稱才逐漸通行起來,成為現在人們所熟知的名稱。

掛一漏萬談奇妙性質

黃金分割數G有著許多有趣的性質。最引人注目的是它與斐波那契數列的關系。

斐波那契是中世紀著名的學者。他在《算盤書》一書中提出了一道有趣的「兔子生殖問題」,由此引出了一個奇妙數列:

1,2,3,5,8,13,21,34,55,89,144,……

規律是:從第三項開始每一項是前兩項之和。後人稱為斐波那契數列。它與黃金分割會有什麼關系呢?

讓我們計算一下斐波那契數列中每前一項與後一項之比,就會發現這個比值竟與黃金分割數G越來越接近,完全可以作為G的一階、二階……N階近似。多麼奇妙啊!其實可以證明這些比值正是以G作為它們的極限。

中外比與斐波那契數列的這種內在聯系,為它大添了光彩,也使它具有了一種特殊的神秘感與迷人的魅力,使後來的許多數學家為之傾倒。

拋磚引玉粗說影響及應用

黃金分割無論是在理論上,還是實際生活中都有著極其廣泛而又非常簡單的應用,從而也在歷史上產生了巨大的影響。古代,中末比主要是作為作圖的方法而使用。到文藝復興時期它又重新引起了當時人們的極大興趣與注意,並產生了廣泛的影響,得到了多方面的應用。如在繪畫、雕塑方面,畫家、雕塑家都希望從數學比例上解決最完美的形體,它的各部分的相互關系問題,以此作為科學的藝術理論用來指導藝術創造,來體現理想事物的完美結構。著名畫家達芬奇在《論繪畫》一書中就相信:「美感完全建立在各部分之間神聖的比例關繫上,各特徵必須同時作用,才能產生使觀眾如醉如痴的和諧比例。」在這一時期,藝術家們自覺地被黃金分割的魅力所誘惑而使數學研究與藝術創作緊密地結合起來,並對後來形式美學與實驗美學產生了巨大影響。

十九世紀,德國美學家蔡辛提出黃金分割原理且對黃金分割問題進行理論闡述,並認為黃金分割是解開自然美和藝術美奧秘的關鍵。他用數學比例方法研究美學,啟發了後人。德國哲學家、美學家、心理學家費希納進行了實驗美學的嘗試,把黃金分割原理建立在廣泛的心理學測試基礎上,將美學研究與自然科學研究結合在一起,引起廣泛的注意。直到本世紀50年代,實驗美學的研究還十分活躍。直到最近,黃金分割原理仍然是一個充滿了神奇之謎的科學美學問題。如在晶體學的准晶體結構研究領域中,黃金分割問題重新引起了物理學家和數學家們的興趣。

它的實際應用,也有很多。最廣為人道的例子是優選學中的黃金分割法,它是美國的基弗於1953年首先提出的。從1970年開始在我國推廣並取得了很大的成績。優選法的另一種方法――分數法,是取G的分數近似值,在實際中同樣有著廣泛應用。

真真假假道神秘傳說

由於中末比具有各種獨特的性質,隨著它的影響越來越大,也就有了越來越多的關於它的傳說。這些傳說虛虛實實,令人撲朔迷離難辨真偽,但卻一直為人們所津津樂道,廣為流傳。

有人研究得出黃金分割是人和動植物形態的一個結構原則。於是有了以下各種說法:

人體自身美,即人體最優美的身段遵循

Ⅳ 黃金分割線的比例是多少

黃金分割線的比例是:0.618:0.382。

黃金分割線是一種古老的數學方內法,黃金分割的創始人是古希臘的畢容達哥拉斯,他在當時十分有限的科學條件下大膽斷言:一條線段的某一部分與另一部分之比,如果正好等於另一部分同整個線段的比即0.618,那麼,這樣比例會給人一種美感。

後來,這一神奇的比例關系被古希臘著名哲學家、美學家柏拉圖譽為"黃金分割律"。

(4)黃金分割比值是擴展閱讀:

黃金分割線股市中最常見、最受歡迎的切線分析工具之一,實際操作中主要運用黃金分割來揭示上漲行情的調整支撐位或下跌行情中的反彈壓力位。不過,黃金分割線沒有考慮到時間變化對股價的影響,所揭示出來的支撐位與壓力位較為固定,投資者不知道什麼時候會到達支撐位與壓力位。

因此,如果指數或股價在頂部或底部橫盤運行的時間過長,則其參考作用則要打一定的折扣。與江恩角度線與江恩弧形相比略有遜色,但這絲毫不影響黃金分割線為實用切線工具的地位。

Ⅳ 什麼是黃金分割比例

在分割時.在長度為全長的約0.618處進行分割.就叫作
黃金分割
.這個分割點就叫做黃金分割點(通常用φ表示)

把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,用分數表示為(√5-1)/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似表示,通過簡單的計算就可以發現:
(1-0.618)/0.618=0.6
一條線段上有兩個黃金分割點

Ⅵ 黃金分割比例是多少

黃金分割最早見於古希臘和古埃及。黃金分割又稱黃金率、中外比,即把一根線段分為長短不等的a、b兩段,使其中長線段的比(即a+b)等於短線段b對長線段a的比,列式即為a:(a+b)=b:a,其比值為0.6180339……這種比例在造型上比較悅目,因此,0.618又被稱為黃金分割率。
??黃金分割長方形的本身是由一個正方形和一個黃金分割的長方形組成,你可以將這兩個基本形狀進行無限的分割。由於它自身的比例能對人的視覺產生適度的刺激,他的長短比例正好符合人的視覺習慣,因此,使人感到悅目。黃金分割被廣泛地應用於建築、設計、繪畫等各方面。
??在攝影技術的發展過程中,曾不同程度地借鑒並融匯了其他藝術門類的精華,黃金分割也因此成為攝影構圖中最神聖的觀念。應用在攝影上最簡單的方法就是按照黃金分割率0.618排列出數列2、3、5、8、13、21……並由此可得出2:3、3:5、5:8、8:13、13:21等無數組數的比,這些數的比值均為0.618的近似值,這些比值主要適用於:畫面長寬比的確定(如135相機的底片幅面24mmX36mm就是由黃金比得來的)、地平線位置的選擇、光影色調的分配、畫面空間的分割以及畫面視覺中心的確立。攝影構圖通常運用的三分法(又稱井字形分割法)就是黃金分割的演變,把上方形畫面的長、寬各分成三等分,整個畫面承井字形分割,井字形分割的交叉點便是畫面主體(視覺中心)的最佳位置,是最容易誘導人們視覺興趣的視覺美點。
??攝影構圖的許多基本規律是在黃金分割基礎上演變而來的。但值得提醒的是,每幅照片無需也不可能完全按照黃金分割去構圖。千篇一律會使人感到單調和乏味。關於黃金分割,重要的是掌握它的規律後加以靈活運用。

Ⅶ 黃金分割比例的比值

無限不循環小數 把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現: 1/0.618=1.618 (1-0.618)/0.618=0.618 這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。 讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"菲波那契數列",這些數被稱為"菲波那契數"。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。 菲波那契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)- →0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。 一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我們的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什麼?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形。 由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。 黃金分割點約等於0.618:1 是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。 利用線段上的兩黃金分割點,可作出正五角星,正五邊形。 2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...後二數之比 2/3,3/5,4/8,8/13,13/21,...近似值的。 黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為"金法",17世紀歐洲的一位數學家,甚至稱它為"各種演算法中最可寶貴的演算法"。這種演算法在印度稱之為"三率法"或"三數法則",也就是我們現在常說的比例方法。 其實有關"黃金分割",我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例演算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。 因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種 0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。 黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取1.618 ,就像圓周率在應用時取3.14一樣。 發現歷史 由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。 公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。

閱讀全文

與黃金分割比值是相關的資料

熱點內容
銀行理財經理年度思想工作總結 瀏覽:36
訂單融資的起源 瀏覽:177
聯想收購ibm的融資安排 瀏覽:155
黃金期貨合約au1712 瀏覽:608
委託個人投資理財是否合法 瀏覽:562
國外匯款到國內中國銀行代碼 瀏覽:888
在民營企業金融服務講話 瀏覽:173
中國順客隆股東 瀏覽:186
sjs交易所 瀏覽:865
附近的海通證券交易所 瀏覽:934
資產負債率與融資約束的關系 瀏覽:595
限制性股票激勵計劃預留權益失效 瀏覽:138
安卓版外匯天眼 瀏覽:407
買理財產品和基金哪一個好 瀏覽:260
理財公司客戶答謝發言稿 瀏覽:237
日本4月份外匯儲備 瀏覽:724
非公開定向債務融資工具注冊材料 瀏覽:735
1979外匯卷的最新收藏價格 瀏覽:781
金融期貨論文參考文獻 瀏覽:987
浙商國際金融控股有限公司怎麼樣 瀏覽:496