A. 黃金三角形的計算公式
黃金三角形分兩種:
一種是等腰三角形,兩個底角為72°,頂角為36°;這種三角形既美觀又標准。這樣的三角形的底與一腰之長之比為黃金比:(√5-1)/2.
另一種也是等腰三角形,兩個底角為36°,頂角為108°;這種三角形一腰與底邊之長之比為黃金比:(√5-1)/2.
黃金三角形是一個等腰三角形,它的頂角為36°,每個底角為72°.它的腰與它的底成黃金比.當底角被平分時,角平分線分對邊也成黃金比,並形成兩個較小的等腰三角形.這兩三角形之一相似於原三角形,而另一三角形可用於產生螺旋形曲線.
黃金三角形的一個幾何特徵是:它是唯一一種能夠由5個與其全等的三角形生成其相似三角形的三角形。
把五個黃金三角形稱為「小三角形」,拼成的相似黃金三角形稱為「大三角形」。則命題可以理解為:五個小三角形能夠不重疊又不超出地充滿大三角形。要滿足這種填充,必要條件之一是大三角形的每條邊都可以由若干條小三角形的邊相加而成。
B. 黃金三角形的資料
【黃金三角形】所謂黃金三角形是一個等腰三角形,其底與腰的長度比為黃金比值;對應的還有:黃金矩形之類,正是因為其腰與邊的比為(√5-1)/2.約為0.618而獲得了此名稱。
【作法】
1、作正方形ABCD
2、取AB的中點N
3、以點N為圓心NC為半徑作圓交AB延長線於E
4、以B為圓心BE長為半徑作⊙B
5、以A為圓心AB長為半徑作⊙A交⊙B於M
則△ABM為黃金三角形。
C. 黃金分割三角形
解:則黃金三角形知:
∠CAB=36°,∠ADC=108°,
∵AE∥CD,∴∠DAE=72°,
∴∠EAC=72°-36=°=36°,
又∠E=∠ADB=72°,
∴∠ACE=72°,
∴旋轉角∠BCE『=108°
或∠CDE』=72°。
D. 在三角形上作出黃金分割點的詳細方法
你是用尺規作圖嗎?如果是的,那可以先作AB的中垂線,可以得到AB長度的一半,再延長AB到E使AB=BE,再作AE的中垂線BF,在BF上截取AB長度的一半
E. 誰知道黃金分割的畫法的原理(三角形法)
黃金分割又稱黃金律,是指事物各部分間一定的數學比例關系,即將整體一分為二,較大部分與較小部分之比等於整體與較大部分之比,其比值為1∶0.618或1.618∶1,即長段為全段的0.618.0.618被公認為最具有審美意義的比例數字.上述比例是最能引起人的美感的比例,因此被稱為黃金分割.
黃金分割三角形
正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形. 黃金分割三角形有一個特殊性,所有的三角形都可以用四個與其本身全等的三角形來生成與其本身相似的三角形,但黃金分割三角形是唯一一種可以用5個而不是4個與其本身全等的三角形來生成與其本身相似的三角形的三角形.由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18
F. 什麼是底部黃金三角結點
這是編程學的術語,涉及到了數學函數。三角結點包含於高數中,常用於編程、數據挖掘。至於底部黃金三角結點,是指一個三角形內處於特殊黃金位置的一個結點,所以被稱為「底部黃金三角結點」。
G. 三角函數值的數值表
角α 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度制 o π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sinα o 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0-10 cosα 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -101 tanα o √3/3 1 √3 ±∞-√3 -1 -√3/3 0±∞0 sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0
sin15=0.650;sin15°=(√6-√2)/4
cos15=-0.759;cos15°=(√6+√2)/4
tan15=-0.855;tan15°=2-√3
sin30=-0.988;sin30°=1/2
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=√3/2
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=√3
sin75=-0.388;sin75°=cos15°
cos75=0.922;cos75°=sin15°
tan75=-0.421;tan75°=sin75°/cos75° =2+√3
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
tan90=-1.995;tan90°不存在
sin105=-0.971;sin105°=cos15°
cos105=-0.241;cos105°=-sin15°
tan105=4.028;tan105°=-cot15°
sin120=0.581;sin120°=cos30°
cos120=0.814;cos120°=-sin30°
tan120=0.713;tan120°=-tan60°
sin135=0.088;sin135°=sin45°
cos135=-0.996;cos135°=-cos45°
tan135=-0.0887;tan135°=-tan45°
sin150=-0.7149;sin150°=sin30°
cos150=-0.699;cos150°=-cos30°
tan150=-1.022;tan150°=-tan30°
sin165=0.998;sin165°=sin15°
cos165=-0.066;cos165°=-cos15°
tan165=-15.041;tan165°=-tan15°
sin180=-0.801;sin180°=sin0°=0
cos180=-0.598;cos180°=-cos0°=-1
tan180=1.339;tan180°=0
sin195=0.219;sin195°=-sin15°
cos195=0.976;cos195°=-cos15°
tan195=0.225;tan195°=tan15°
sin360=0.959;sin360°=sin0°=0
cos360=-0.284;cos360°=cos0°=1
tan360=-3.380;tan360°=tan0°=0
cos72=[(√5)-1]/4(利用黃金等腰三角形可得出)
sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383
sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931
sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074
sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474
sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015
sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675
sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994
sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027
sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375
sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582
sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475
sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941
sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708
sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474
sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239
sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386
sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678
sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009
sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017
sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535
sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683
sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057
sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378
sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733
sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738
sin88=0.9993908270190958 sin89=0.9998476951563913
sin90=1
cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738
cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733
cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378
cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057
cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683
cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535
cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017
cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009
cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679
cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387
cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424
cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474
cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709
cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942
cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476
cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582
cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375
cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731
cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272
cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001
cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468
cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004
cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015
cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745
cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074
cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923
cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092
cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346
cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966
cos88=0.03489949670250108 cos89=0.0174524064372836
cos90=0
tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196
tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646
tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627
tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221
tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227
tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063
tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158
tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361
tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288
tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257
tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104
tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609
tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072
tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399
tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999
tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927
tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051
tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733
tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827
tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767
tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503
tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215
tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023
tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526
tan73=3.270884841404 tan74=3.4874144438409087 tan75=3.7320508075688776
tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456
tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041
tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587
tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816
tan88=28.636253282915515 tan89=57.289961630759144
tan90=無取值
H. 黃金分割點位都有哪些點
黃金分割點約等於0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...後二數之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為"金法",17世紀歐洲的一位數學家,甚至稱它為"各種演算法中最可寶貴的演算法"。這種演算法在印度稱之為"三率法"或"三數法則",也就是我們現在常說的比例方法。
其實有關"黃金分割",我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例演算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。