⑴ 電焊的由來
電焊是在19世紀末隨著電力工業的發展而發展起來的。
1885年俄國H.H.別納爾多斯發現了碳極電弧。
1887年美國E.湯姆森(Elihu Thomson)發明了用於薄板焊接的電阻焊。
20世紀初,手弧焊已進入實用階段。20年代美國製成了自動電弧焊機。
1930年美國發明了埋弧焊。
40年代和50年代初,鎢極和熔化極惰性氣體保護焊,以及二氧化碳氣體保護焊相繼在美國和蘇聯問世,促進了氣體保護電弧焊的應用和發展。
1951年蘇聯發明了電渣焊,成為大厚度焊件的高效焊接方法。
50年代中,超聲波焊、摩擦焊和擴散焊又相繼在美國和蘇聯問世。50年代末和60年代中出現的等離子弧焊、電子束焊和激光焊標志著高功率密度熔焊的發展,使得許多難以用其他方法焊接的材料和結構得以焊接。
⑵ 軸承鋼成分有哪些
軸承鋼,是鋼鐵行業里應用得最為廣泛的一種,也是鋼鐵生產過程中要求最嚴格的鋼種之一。使用軸承鋼,可以有效地提高軸承的扭轉性能、降低噪音和延遲使用壽命。由於其性能優越,所以國際上嚴格要求了其成分必須具有均勻的硬度、耐磨性和高的彈性極限,但其成分里究竟應該包含多少碳量、多少含鉻量,卻是一門大大的學問。每一位冶金技術人員都應該懂得不同種類的軸承鋼的成分構成,才能更順利地冶煉出高質量的軸承鋼。
軸承鋼,作為是所有鋼鐵生產中要求最嚴格的鋼種之一,其含碳量ωc為1%左右,含鉻量ωcr為0.5%-1.65%。國際上按照國際標准,將軸承鋼分為六大類:高碳鉻軸承鋼、無鉻軸承鋼、滲碳軸承鋼、不銹軸承鋼、中高溫軸承鋼及防磁軸承鋼。其中,高碳鉻軸承鋼GCr15產量目前已佔到世界軸承鋼生產總量的80%以上。而高碳鉻軸承鋼GCr15是世界上生產量最大的軸承鋼,含碳Wc為1%左右,含鉻量Wcr為1.5%左右。從1901年誕生至今100多年來,高碳鉻軸承鋼GCr15的主要成分基本上沒有改變過。以至於軸承鋼如果沒有特殊的說明,那就是指GCr15。
一般的軸承鋼,主要都是高碳鉻軸承鋼,即含碳量1%左右,加入1.5%左右的鉻,並含有少量的錳、硅元素的過共析鋼。鉻可以改善熱處理性能、提高淬透性、組織均勻性、回火穩定性,又可以提高鋼的防銹性能和磨削性能。但當鉻含量超過1.65%時,淬火後會增加鋼中殘余奧氏體,降低硬度和尺寸穩定性,增加碳化物的不均勻性,降低鋼的沖擊韌性和疲勞強度。為此,高碳鉻軸承鋼中的含鉻量一般控制在1,65%以下。只有嚴格控制軸承鋼中的化學成分,才能通過熱處理工序獲得滿足軸承性能的組織和硬度。
面對成分要求如此嚴格的軸承鋼,其冶金過程中對質量的控制也極其嚴苛,要注意如下幾點:
(1)較高的尺寸精度
(2)特別嚴格的純潔度
(3)嚴格的低倍組織和顯微(高倍)組織
(4)特別嚴格的表面缺陷和內部缺陷
(5)嚴格的碳化物不均勻性
(6)嚴格的表面脫碳層深度
隨著經濟發展,中國各地的城市基礎設施工程正進行得熱火朝天,而精密的軸承等基礎機械鑄造業也飛速發展,造成對軸承的需求越來越多,未來的軸承鋼市場前景一片光明。各大鋼鐵廠更要充分了解各大分類的軸承鋼成分構成及其物理性能,在冶煉過程中要嚴格控製成分含量,同時注意對冶金質量的嚴格控制,使得冶煉出來的軸承鋼符合國際標准,並可以滿足快速增長的市場需求。
⑶ 軸承鋼淬火出現片狀馬氏體合格嗎
滾動軸承鋼 製造各類滾動軸承套圈和滾動體的鋼。軸承轉動時承受很高的交變應力,除要求材料有較高的抗壓強度、接觸疲勞強度和耐磨性外,還要有一定的韌性、耐蝕性、良好的尺寸穩定性和工藝性。 高碳鉻軸承鋼於1901年首先出現於歐洲。1913年美國將其列為標准鋼種。70多年來,各國發展出許多提高軸承鋼純潔度和改善碳化物不均勻性的新工藝,真空脫氣、爐外精煉等技術已廣泛應用於軸承鋼生產,並以軸承鋼管材製造套圈,進一步提高了鋼材利用率和軸承壽命。中國於1951年開始生產軸承鋼。滾動軸承鋼(ball bearing steel)是用於製造滾動軸承的滾動體和內外套圈的鋼,通常在淬火狀態下使用。滾動軸承在工作中需承受很高的交變載荷,滾動體與內外圈之間的接觸應力大,同時又工作在潤滑劑介質中。因此,滾動軸承鋼具有高的抗壓強度和抗疲勞強度,有一定的韌性、塑性、耐磨性和耐蝕性,鋼的內部組織、成分均勻,熱處理後有良好的尺寸穩定性。常用的滾動軸承鋼是含碳0.95%~1.10%、含鉻0.40%~1.60%的高碳低鉻軸承鋼,如GCr6、GCr9、GCr15等。 為了滿足軸承在不同工作情況下的使用要求,還發展了特殊用途的軸承鋼,如製造軋鋼機軸承用的耐沖擊滲碳軸承鋼、航空發動機軸承用的高溫軸承鋼和在腐蝕介質中工作的不銹軸承鋼等。 高碳鉻軸承鋼於1901年首先出現於歐洲。1913年美國將其列為標准鋼種滾動軸承鋼。70多年來,各國發展出許多提高軸承鋼純潔度和改善碳化物不均勻性的新工藝,真空脫氣、爐外精煉等技術已廣泛應用於軸承鋼生產,並以軸承鋼鋼管製造套圈,進一步提高了鋼材利用率和軸承壽命。中國於1951年開始生產軸承鋼。現代的滾動軸承鋼可分為高碳鉻軸承鋼、滲碳鉻軸承用鋼、不銹軸承用鋼和高溫軸承用鋼四大類。在軸承製造工業中應用面廣、使用量大的是高碳鉻軸承鋼。高的純潔度和良好的均勻組織是軸承鋼的主要質量指標,因此對軸承鋼中的非金屬夾雜物和碳化物不均勻性等,都在鋼材標准中根據不同使用條件,規定了合格級別。 碳 是軸承鋼中主要強化元素。軸承鋼含碳量一般較高,使用狀態主要以隱晶針和細晶針狀馬氏體為基體,在組織中保留一定數量的淬火未溶碳化物,以提高鋼的耐磨性。而適當降低鋼中的含碳量,可增加合金元素在基體中的溶解度,雖減少淬火未溶碳化物數量,但提高鋼的淬透性和接觸疲勞強度;反之,增加含碳量則有利於鋼的耐磨性。因此軸承鋼中的含碳量根據不同的用途來確定,通常控制在0.8~1.2%范圍內。 鉻 是形成碳化物的主要元素。高碳鉻鋼在各種熱處理狀態下都形成M3C型碳化物(M表示金屬)。鉻可提高鋼的力學性能、淬透性和組織均勻性。還能增加鋼的耐蝕能力。鋼中含鉻量一般都不超過2.0%,鉬能取代鋼中的鉻,在增加鋼的淬透性上,鉬比鉻強,所以已發展了高淬透性的含鉬高碳鉻軸承鋼。 硅、錳 在軸承鋼中能提高淬透性。利用硅、錳的典型鋼號為 GCr15SiMn。錳還可和鋼中的硫生成穩定的MnS,硫化物常能包圍氧化物,形成以氧化物為核心的復合夾雜物,減輕氧化物對鋼的危害作用。軸承鋼一般用鹼性電爐冶煉,也可加爐外真空脫氣處理或鋼包真空精煉。軸承鋼的鑄錠工藝和錠型設計對非金屬夾雜物和碳化物在鋼中的分布都有很大影響。軸承鋼容易產生白點,所以鋼錠和鋼坯都要緩冷。航空用優質軸承鋼需用電渣重熔或真空自耗重熔等特殊方法冶煉。 軸承鋼的熱處理 軸承鋼錠一般要在1200~1250℃高溫下進行長時間擴散退火,以改善碳化物偏析。熱加工時要控制爐內氣氛,鋼坯加熱溫度不宜過高,保溫時間不宜過長,以免發生嚴重脫碳。終軋(鍛)溫度通常在800~900℃之間,過高易出現粗大網狀碳化物,過低易形成軋(鍛)裂紋。軋(鍛)材成品應快冷至650℃,以防止滲碳體在晶界上呈網狀析出,有條件時可採用控制軋制工藝。 為了取得良好的切削性和淬火前的預組織,冷加工用軸承鋼材要進行完全的球化退火。退火溫度一般為780~800℃,退火時要防止脫碳。如果軋制鋼材存在過粗的網狀滲碳體,則退火前需先進行正火處理。鉻軸承鋼通常在830~860℃之間加熱,油淬,150~180℃回火。精密軸承的組織中,應盡可能降低殘余奧氏體量或使殘余奧氏體在使用過程中保持穩定,因此常需在淬火後進行-80℃(或更低溫度)冷處理和在 120~140℃下進行長時間的穩定化處理。
⑷ 形形色色的礦產資源的種類有哪些
迄今為止,全世界發現的礦產近200種(我國發現168種),據對154個國家主要礦產資源的測算結果,世界礦產資源總的潛在價值約為142萬億美元。
世界上蘊藏量最豐富的大概就是黑色金屬了。黑色金屬,包括鐵、錳、鉻、鈦和釩等5種礦產。
1992年世界鐵礦石儲量為1500億噸,前蘇聯、澳大利亞、巴西、加拿大、美國、印度和南非七國共佔有世界鐵金屬儲量的84%。按年產10億噸鐵礦石計算,目前世界鐵礦石儲量的靜態保證年限為151年。
錳儲量為7.26億~8億噸,未包括海底錳資源。世界錳儲量的80%以上集中在前蘇聯和南非。上述儲量的靜態保證年限為40年。但由於有海底錳結核和錳結殼這一未開發的資源潛力,世界不必擔心錳礦資源不足。
鉻、鈦、釩金屬已探明的儲量分別為14億噸、2億噸(鈦鐵礦)、1000萬噸,靜態保證年限分別為132年、55年和312年。
有色金屬,包括鋁、銅、鉛、鋅、鋁、鎢、錫、鉬、銻、鎳、鎂、汞、鈷、鉍等13種礦產。
世界鋁土礦資源豐富,儲量巨大,探明儲量達230億噸。澳大利亞、幾內亞、巴西、牙買加等國是世界鋁土礦資源大國。世界現有儲量的靜態保證年限達216年以上。
除鋁外,世界鈷資源保證年限也較高,其儲量為400萬噸,靜態保證年限為168年。此外,海底豐富的鈷資源可以確保人類無缺鈷之慮。
其他有色金屬中,鉬、鎢、鎳、銻的探明儲量靜態保證年限均在50年到60年之間,銅、鉛、鋅、鎂、汞、鉍則顯得有所不足,其靜態保證年限一般在30年或30年以下。
貴金屬和稀土,除金、銀儲量消耗過快外,鉑族金屬和稀土氧化物資源不足為慮。
非金屬,包括硫、磷、鉀、硼、鹼、螢石、重晶石、石墨、石膏、石棉、滑石、硅灰石、高嶺土、硅藻土、金剛石等礦產。這些是世界上極為豐富的資源之一,其中除硫、金剛石,特別是金剛石資源嚴重不足,靜態保證年限較低以外,其他都可以成為未來工業和人們生活可資依賴的礦產原料來源。
總的看來,世界礦產資源中期供需形勢較為緩和:但資源短缺與人口增長及經濟發展的需求之間的矛盾將繼續存在,資源供需形勢將出現周期性波動。
20世紀90年代初期,世界礦產資源供需形勢與20世紀80年代末期相比沒有出現重大轉機。由於全球性特別是在世界經濟中佔主導地位的工業化國家經濟持續不景氣,加之前蘇聯和東歐各國經濟在轉軌過程中大幅度下滑,全球經濟進入了長達五六年的調整階段。世界經濟增長率明顯下降,繼1991年出現0.3%的負增長之後,1992年工業化國家平均經濟增長率為1.6%,東歐和獨聯體各國經濟繼續大幅度下滑。與此相對照,發展中國家作為一個整體,其經濟呈現出良好的勢頭,1991年增長3.4%,1992年達4.5%,亞洲國家超過6%。
由於工業化和經合組織國家經濟結構改組、新技術革命導致基礎原材料消耗降低以及節約、替代等原因,礦產原料的使用強度正在逐年減少。工業化和經合組織國家的礦產原料消費量增長緩慢,多數礦產品供過於求,導致生產能力過剩、礦產品積壓、價格下跌——呈現全球性的礦業蕭條。
這段時間里,礦產品需求的增長主要在發展中國家和地區,特別是亞太地區。在工業化國家和經合組織國家的鋼、鋁、銅、鋅等消費量以不同幅度下降時,亞太地區的金屬使用率卻呈上升趨勢。過去10年中,亞太地區鋼的用量平均年增長2.2%,鋅年增長0.5%,銅的使用率平均年增長率高達8.4%。預計今後10~20年內,亞太地區的礦產品消費量仍將有較快的增長,原因是擁有龐大人口的國家——中國和印度,人均有色金屬消費量只及日本或英國的1/20~1/10。
能源和礦產資源供需形勢變化還可以從另外一個角度去分析。20世紀以來,人類對礦產資源的需求顯著增加了,1901~1980年全世界采出的礦物原料價值增長了9.6倍,其中後20年為前60年的1.6倍。石油農業的發展使農業對礦物原料的依賴程度提高了,工業和整個經濟對能源和礦產資源消耗的規模進一步加大。1986年對50個國家的統計表明,人均國民生產總值與能量及人均能源消耗呈線性正相關關系:人均國民生產總值不到1000美元時,人均能耗在1500千克(標准煤)以下;人均國民生產總值為4000美元時,人均能耗隨之上升,達10000千克(標准煤)以上。近年來,雖然世界對礦物原料需求速度相對有所降低,但資源消費的絕對數量仍然在增加。而且,20世紀80年代以來,世界礦產品貿易額不斷增長,到1987年出口貿易額(包括能源產品)已達4420億美元,佔世界出口總額的17.7%。1991年世界礦產品出口貿易值約為6850億美元,比1990年增長6%。預測到21世紀,世界礦產品貿易額仍將是緩慢增長的趨勢。
大量的統計資料表明,人類社會在不同的經濟發展階段,對礦產資源的消耗強度呈波動曲線。所以在觀察礦產資源供需形勢時,我們要掌握兩點:一是不同國家在不同發展階段的需求不同,大多數發展中國家在未來30年至50年中,常規礦產仍保持一定的需求增長,而新礦產則呈強勁增長趨勢。
⑸ 學習任務化石的形成及保存分析
【任務描述】 ①正確分析化石的形成條件,了解化石的石化作用;②了解常見的化石類型;③熟練鑒定化石類型。
一、化石的概念
化石是指保存在岩層中地質歷史時期的生物遺體和遺跡。因此,化石區別於一般的岩石在於,它必須與古代生物相聯系,它必須具有諸如形狀、結構、紋飾和有機化學成分等生物特徵,或者是由生物生活活動所產生的並保留下來的痕跡。一些保存在地層中與生物和生物活動無關的物體,雖然在形態上與某些化石十分相似,但只能稱為假化石,如姜結石、龜背石、泥裂、卵形礫石、波痕、放射狀結晶的礦物集合體、礦質結核、樹枝狀鐵質沉澱物等,都不是化石。
因為古生物學是以化石為研究對象的,而且古生物是相對現生生物而言的,它們具有生活時代上的差別。通常古、今生物之間的時間界線被定在距今1萬年左右,即生活在全新世以前的生物才稱為古生物,而全新世以來的生物屬於現生生物的范疇。因此,埋藏在現代沉積物中的生物遺體不是化石,人類歷史以來的考古文物一般亦不被認為是化石。
二、化石的種類
在古生物學研究的化石中,有些生物體和化石個體較大,利用常規方法在肉眼下就能直接進行研究,這些化石稱為大化石。但是某些生物類別,如有孔蟲、放射蟲、介形蟲、溝鞭藻和硅藻等,以及某些古生物類別的微小部分或微小器官,如牙形石、輪藻和孢子花粉等,形體微小,一般肉眼難以辨認,這些化石稱為微化石。對於微化石的研究必須採用專門的技術和方法從岩石中將化石處理、分離出來,或磨製成切片。
保存在地層中的龜背石、卵形礫石、放射狀結晶的礦物集合體、礦質結核、樹枝狀鐵錳質沉積物等,在形態上與化石有極其形似性,但它們與生物或生物生命活動無關,我們稱其為假化石(圖1-8)。
圖1-8 假化石
(據郭寶炎,2009)
三、化石的形成過程
研究生物自死亡後埋藏在沉積物中,隨同沉積物經化石化作用形成化石的學科稱為埋藏學。從埋藏學角度,可將化石形成的全部過程分為圖1-9所示的幾個階段。
圖1-9 化石形成的過程
(據孫躍武等,2006)
◎生物群落:是在一定區域或同一環境里各種生物居群相互結合的一種結構單元。這種單元結合鬆散,在其形成之前及形成以後,不是固定不變的,而是經常在演變著,但演變有規律性,同時群落也具有相對的穩定性。
◎屍積群:因各種原因生物死亡後屍體堆積而成的屍積群或稱死亡群。屍積群可能屬於同一群落的成分,亦可能是幾個群落的成分死後的混合堆積。這主要受沉積物的沉積速度、環境穩定性、生物擾動等因素的控制。
◎埋藏群:屍積群被埋藏後稱埋藏群,它可能是原地埋藏,也可能遷移至他處或與其他群落的屍積群相混雜成為異地埋藏。原地埋藏不同於原位埋藏。一般生物死亡後只要在其所屬群落生活的范圍內埋藏都屬原地埋藏。
◎化石群:埋藏群通過石化作用與周圍的沉積物同時形成化石群。在原地埋藏,其成分由生物群落的組成部分形成的化石群稱化石群落。化石群落是生物群落中被保存下來的一部分,不能充分表明彼此間的關系(如取食、保護等),但可指明它們原來生活於同一處所。異地埋藏所形成的化石群稱為化石組合。化石組合可能包括殘留原地種類,即保留一部分在原地埋藏的種類,而個體大小和數量亦非原來面貌;搬遷種類,即由不同環境遷入的同時期種類;轉移種類,即隨同較老的岩石轉移而來再沉積的不同時期種類。研究原地埋藏的化石群落和異地埋藏的殘留原地種類可恢復原地環境,搬遷種類對研究古地理環境可提供有益的資料,如水流強度、水流方向、能量高低等。一般埋藏在原地的化石多保存較完整,很少被破壞,有時能保存原來生活時的狀態。異地埋藏的化石經過搬運常有不同程度的磨損或分選等現象。
四、化石的形成條件
地史時期的生物遺體及其生命活動的痕跡在被沉積物埋藏後,經歷了漫長的地質年代,隨著沉積物的成岩作用,埋藏在沉積物中的生物體在成岩作用下經過物理化學作用的改造,即石化作用,而形成化石。化石的形成和保存取決於以下幾方面的條件。
(一)生物本身條件
從生物本身條件來說,最好具有硬體,因為軟體部分容易腐爛、分解而消失,而硬體主要是由礦物質組成的,能夠比較持久地抵禦各種破壞作用。但是,硬體的礦物質成分不同,保存為化石的可能性也不同。由方解石、硅質化合物和甲氰磷酸鈣等礦物組成的生物硬體,在成岩和石化作用過程中比較穩定,容易保存為化石;含鎂方解石等不穩定礦物,在轉化為穩定礦物之前則容易遭受破壞。有機質硬體如角質層、木質、幾丁質薄膜等,雖易遭受破壞,但在成岩過程中可炭化而保存為化石,如植物葉子、筆石體壁等。在某些極為特殊的條件下,一些動物的軟體部分有時也能保存成為化石,如我國撫順松脂包裹的昆蟲化石(圖1-10 之1),波蘭斯大盧尼瀝青湖中的披毛犀化石(圖1-10 之2),西伯利亞第四紀凍土中的猛獁象化石(圖1-10 之3,4)等。
(二)生物死亡的環境條件
生物死後屍體所處的物理化學環境直接影響化石的保存和形成。在高能水動力條件下,生物屍體容易被磨損破壞;水體pH 值小於7.8 時,碳酸鈣組成的硬體易溶解;氧化環境中有機質易腐爛,而還原條件下有機質容易保存下來。此外,當時生活著的動物吞食和細菌的腐蝕作用亦影響化石的保存。
圖1-10 完整實體化石
(據Scott,1978;河北師范學院生物系,1975;夏樹芳,1978)
1.琥珀中的昆蟲化石;2.瀝青湖中的披毛犀化石;3,4.凍土層中的猛獁象化石
(三)埋藏條件
生物死後掩埋的沉積物不同,保存為化石的可能性亦不同。如果生物屍體是被化學沉積物、生物成因的沉積物所埋藏,那麼,除軟體部分外,硬體比較容易保存下來。如果是被粗碎屑沉積物埋藏,則由於粗碎屑沉積物的機械活動性和富孔隙,生物屍體容易遭受破壞。但在某些特殊的沉積物(如松脂、冰川凍土)中,一些生物的軟體部分亦能完好地保存下來(圖1-10)。
(四)時間條件及成岩作用的條件
只有生物死後迅速被埋藏起來才有可能被保存為化石,生物屍體如果暴露於空氣中,會受氧化作用或被其他生物吞食而遭破壞,即使是硬體部分,也會被長時間風化作用所毀壞。因此,生物死後,必須要有某種沉積作用將其迅速掩埋,才能較好地保存下來。被埋藏起來的生物屍體還必須經過長時期的石化作用(即成岩作用)後才能形成化石。有時生物死後雖被迅速埋藏,但不久又因各種原因被重新暴露出來而遭受破壞,也不能形成化石。有時被埋藏在淺層沉積物中的生物屍體還有被生活在泥底中的生物吞食的可能。另一方面,保存在一些較古老的岩層中的化石,因發生岩層變形和變質作用亦容易使化石遭受破壞。
沉積物在固結成岩作用過程中,其壓實和結晶作用都會影響化石的石化作用和化石的保存。一些孔隙度較高、含水分較多的碎屑沉積物壓實作用顯著,因而保存在其中的化石變形作用明顯。保存在碳酸鹽沉積物中的化石,由於沉積物的成岩重結晶作用,由碳酸鈣組成的生物體也將發生重結晶,因而生物體的結構容易被破壞。只有壓實作用較小且未經過嚴重重結晶作用的情況下,才能保存完好的化石。
五、化石的石化作用
化石的石化作用是指埋藏在沉積物中的生物遺體在成岩過程中經過物理化學作用的改造而形成化石的作用。主要有以下3種類型。
(一)礦質填充作用
生物的硬體組織中的一些空隙,通過石化作用被一些礦物質沉澱充填,生物的硬體變得緻密和堅實。這種填充作用可發生在生物硬體結構之中,如貝殼中的微孔、脊椎動物的骨髓等,也可發生在生物硬體結構之間,如有孔蟲殼的房室、珊瑚的隔壁之間等。
(二)置換作用
在石化作用過程中,原來生物體的組成物質被溶解,並逐漸被外來礦物質所填充。如果溶解和填充的速度相當,以分子的形式置換,那麼原來生物的微細結構可以被保存下來,例如,華北二疊系的硅化木,其原來的木質纖維均被硅質置換,但其微細結構如年輪以及細胞輪廓都仍清晰可見(圖1-11);中北美洲西部三疊系中硅化的動物標本,一些微小和精細的殼飾都完好地被保存下來。如果置換速度小於溶解速度,則生物體的微細構造不會保存,僅保留其外部形態。常見的置換作用有硅化、鈣化、白雲石化和黃鐵礦化等。
圖1-11 石化作用
(據童金南,2007)
(三)炭化作用
石化作用過程中生物遺體中不穩定的成分經分解和升餾作用而揮發消失,僅留下較穩定的炭質薄膜而保存為化石。例如,以幾丁質成分(C15 H26 N2 O10)為主的筆石和植物葉子經升餾作用,H、N和O揮發逃逸,留下炭質化石薄膜(圖1-11)。
六、化石的保存類型
根據化石可以保存的特點,化石可以分為實體化石、模鑄化石、遺跡化石和化學化石四類。
(一)實體化石
指生物的遺體或其一部分保存為化石。在極為特殊的情況下,由於密封、冷藏、乾燥等條件避開了空氣的氧化和細菌的腐蝕,其硬體和軟體幾乎未遭受變化,可以比較完整地保存下來。例如猛獁象(第四紀冰期西伯利亞凍土層中於1901 年發現,其生存於距今25000年以前,不僅骨骼完整,連皮、毛、血肉,甚至胃中食物都保存完整)(圖1-10 之3,4)。又如我國撫順煤田古近系撫順群(始新世至漸新世)琥珀中常見保存完整的蚊、蜂和蜘蛛等昆蟲化石(圖1-10 之1)。此外,由於氣候乾燥使生物體失去水分而被保存為干屍(木乃伊)。
(二)模鑄化石
是生物遺體在底質或圍岩中留下的各種印痕和復鑄物。雖然並非實體本身,但能反映生物體的主要特徵。按其與圍岩的關系主要有:
◎印痕:專指生物死後,遺體沉落在松軟細密底層上留下的印痕。生物遺體已損毀消失。常見的印痕化石有植物葉片、動物觸角、腔腸動物的水母等(圖1-12)。
圖1-12 雲南澄江下寒武統的印痕化石及其軟體復原圖
(據侯先光等,1989)
1.動物軟體印痕化石;
2.動物軟體復原圖
◎印模:主要指生物硬體(如貝殼等)在圍岩上印壓的模。可分外模和內模(圖1-13)。外模是硬體外表的印模;內模是硬體內表的印模。印模化石都能反映原生物的形態構造特徵,但其上的紋飾構造則與原生物表面凹凸相反。
◎核:核化石含有整體之意,能反映生物形態、大小、紋飾等特徵。核有內核、外核之分。有的生物如雙殼類,閉合的雙殼中軟體腐壞消失留下的空間,為泥沙所填充,形成與原空間形狀大小相等的完整實體,是為內核。內核的表面亦即內模。同樣,如果殼內空間尚未充填而其空間與原殼空間同形等大,此空間若再被填充,圍岩上原印壓的外模,反印於填充物之上,即形成與原殼形狀大小一致而成分均一的整體,稱為外核,亦可稱為復型,即原殼體的復型(圖1-14)。
圖1-13 腕足類的背殼及其印模化石
◎鑄型:生物殼體埋於沉積物中,已形成外模和內核,然後殼體被溶蝕,所留空隙再被其他物質填充,即成為原來生物遺體的鑄型。鑄型與外核表面一致,皆與未變或變化實體化石相似,但未保存遺體內部構造,且成分與原生物完全不同(圖1-14)。鑄型與外核區別為後者不含內核。
圖1-14 模鑄化石及其形成過程
(據譚光弼等,1983)
1.雙殼類殼瓣內部軟體;2.埋藏後軟體腐爛;3a.殼內被充填;4a.殼內空間被溶解,形成內核;3 b.殼內未充填,殼被溶蝕;4 b.整個空間被充填而形成外核(復型);3 c.殼內空間被充填;4 c.殼被溶蝕,且空隙填以其他物質,形成鑄型
(三)遺跡化石
保留在岩層中的生物生活活動的痕跡和遺物稱為遺跡化石。遺跡化石對於研究生物活動方式和習性,以及恢復古環境有重要意義。遺跡化石中脊椎動物的足跡是最吸引人的。從足跡上看是爪印還是蹄印,可推知該動物是食肉的還是食草的。我國曾發現不少足跡化石,如陝西神木東山崖侏羅系的禽龍足跡是最大的足跡化石之一(圖1-15 之1)。無脊椎動物中蠕形動物的爬跡,舌形貝和蠕蟲類的潛穴(圖1-15之9,10),以及一些生物的覓食跡都是常見的遺跡化石。
圖1-15 遺跡化石
(據夏樹芳,1978;Ekdale et al.,1984;Seilacher,1970,1984)
1.足跡;2.行跡;3,4.拖跡;5.爬行跡;6~8.停息跡;9,10.潛穴跡
遺跡化石還包括動物的排泄物或卵(蛋化石)。各種動物的糞團、糞粒還可形成糞化石。魚糞化石(屬於糞團化石中的一種)比較常見,如貴州桐梓青杠哨白堊系中找到的魚糞化石。鑒定糞化石可以根據形態、大小、物質成分進行,如螺旋狀的糞化石就可能是具有螺旋瓣腸道的魚類排泄物。爬行類和鳥類的蛋化石比較常見。我國白堊紀地層中的恐龍蛋化石是世界著名的,在山東萊陽地區以及廣東南雄均發現成窩壘疊起來的恐龍蛋化石。我國黃土高原第四紀的土質層中也常發現完整的鴕鳥蛋化石。
自從人類出現以後,古代人類的勞動工具、文化遺跡等可歸屬於化石,但須指出這是指舊石器時代的遺物。例如,北京山頂洞人使用過的石器和骨器等。而新石器時代的遺物,一般屬於文物考古的范疇。
(四)化學化石
地史時期生物有機質軟體部分雖然遭受破壞未能保存為化石,但分解後的有機成分,如脂肪酸、氨基酸等仍可殘留在岩層中。這些物質仍具有一定的有機化學分子結構,雖然常規方法不易識別,但藉助於一些先進的手段和分析設備,仍能把它們從岩層中分離或鑒別出來,進行有效的研究。目前,人們已從岩層中分離出多糖、核苷酸、嘧啶、烴類和各種氨基酸。這些重大進步,推動了當代分子古生物學、古生物化學和生物成礦作用等新興學科的迅速發展,對探索生命起源,闡明生物發展歷史,以及對生物成因的礦產的探查和研究都有重要意義。
七、技能訓練——化石保存類型識別
(一)目的要求
(1)通過化石標本的觀察,初步掌握實體化石保存類型,了解遺跡化石的形態。
(2)通過化石標本的觀察和模擬化石形成,加深對模鑄化石的理解。
(二)訓練內容
1.實體化石
①生物原體化石
②變質遺體化石
充填作用——脊椎動物骨骼
交代作用——a.鈣化(三葉蟲);b.硅化(珊瑚、硅化木);c.黃鐵礦化(菊石);炭化作用(古植物、筆石)
2.模鑄化石
①外模(三葉蟲)
②內模(腕足類、雙殼類)
③內核(腹足類)
④外核(石膏模型)
⑤鑄型
3.遺跡化石
禽龍足跡、恐龍蛋
⑹ 軸承鋼是什麼材質的鋼材
軸承鋼又稱高碳鉻鋼,含碳量Wc為1%左右,含鉻量Wcr為0.5%-1.65%。軸承鋼又分為高碳鉻軸承鋼、無鉻軸承鋼、滲碳軸承鋼、不銹軸承鋼、中高溫軸承鋼及防磁軸承鋼六大類。
高碳鉻軸承鋼GCr15是世界上生產量最大的軸承鋼,含碳Wc為1%左右,含鉻量Wcr為1.5%左右,從1901年誕生至今100多年來,主要成分基本沒有改變,隨著科學技術的進步,研究工作任在繼續,產品質量不斷提高,佔世界軸承鋼生產總量的80%以上。以至於軸承鋼如果沒有特殊的說明,那就是指GCr15。
軸承鋼是用來製造滾珠、滾柱和軸承套圈的鋼。軸承鋼有高而均勻的硬度和耐磨性,以及高的彈性極限。對軸承鋼的化學成分的均勻性、非金屬夾雜物的含量和分布、碳化物的分布等要求都十分嚴格,是所有鋼鐵生產中要求最嚴格的鋼種之一。
(6)錳硅持倉1901擴展閱讀:
GCr15軸承鋼是一種合金含量較少、具有良好性能、應用最廣泛的高碳鉻軸承鋼。經過淬火加回火後具有高而均勻的硬度、良好的耐磨性、高的接觸疲勞性能。該鋼冷加工塑性中等,切削性能一般,焊接性能差,對形成白點敏感性能大,有回火脆性。
GCr15軸承鋼,含c0.95-1.05,Mn0.25-0.45,Si0.15-0.35。
綜合性能良好.球化退火後有良好的切削加工性能.淬火和回火後硬度高而且均勻,耐磨性能和接觸疲勞強度高.熱加工性能好.含有較少的合金元素,價格比較便宜。
⑺ 小弟最近自己打磨一把刀 不知道淬火方法 誰能告訴一下么
金屬熱處理教程:
一 慨述
金屬熱處理是將金屬工件放在一定的介質中加熱到適宜的溫度,並在此溫度中保持一定時間後,又以不同速度冷卻的一種工藝方法。
金屬熱處理是機械製造中的重要工藝之一,與其它加工工藝相比,熱處理一般不改變工件的形狀和整體的化學成分,而是通過改變工件內部的顯微組織,或改變工件表面的化學成分,賦予或改善工件的使用性能。其特點是改善工件的內在質量,而這一般不是肉眼所能看到的。
為使金屬工件具有所需要的力學性能、物理性能和化學性能,除合理選用材料和各種成形工藝外,熱處理工藝往往是必不可少的。鋼鐵是機械工業中應用最廣的材料,鋼鐵顯微組織復雜,可以通過熱處理予以控制,所以鋼鐵的熱處理是金屬熱處理的主要內容。另外,鋁、銅、鎂、鈦等及其合金也都可以通過熱處理改變其力學、物理和化學性能,以獲得不同的使用性能。
在從石器時代進展到銅器時代和鐵器時代的過程中,熱處理的作用逐漸為人們所認識。早在公元前770~前222年,中國人在生產實踐中就已發現,銅鐵的性能會因溫度和加壓變形的影響而變化。白口鑄鐵的柔化處理就是製造農具的重要工藝。
公元前六世紀,鋼鐵兵器逐漸被採用,為了提高鋼的硬度,淬火工藝遂得到迅速發展。中國河北省易縣燕下都出土的兩把劍和一把戟,其顯微組織中都有馬氏體存在,說明是經過淬火的。
隨著淬火技術的發展,人們逐漸發現冷劑對淬火質量的影響。三國蜀人蒲元曾在今陝西斜谷為諸葛亮打制3000把刀,相傳是派人到成都取水淬火的。這說明中國在古代就注意到不同水質的冷卻能力了,同時也注意了油和尿的冷卻能力。中國出土的西漢(公元前206~公元24)中山靖王墓中的寶劍,心部含碳量為0.15~0.4%,而表面含碳量卻達0.6%以上,說明已應用了滲碳工藝。但當時作為個人「手藝」的秘密,不肯外傳,因而發展很慢。
1863年,英國金相學家和地質學家展示了鋼鐵在顯微鏡下的六種不同的金相組織,證明了鋼在加熱和冷卻時,內部會發生組織改變,鋼中高溫時的相在急冷時轉變為一種較硬的相。法國人奧斯蒙德確立的鐵的同素異構理論,以及英國人奧斯汀最早制定的鐵碳相圖,為現代熱處理工藝初步奠定了理論基礎。與此同時,人們還研究了在金屬熱處理的加熱過程中對金屬的保護方法,以避免加熱過程中金屬的氧化和脫碳等。
1850~1880年,對於應用各種氣體(如氫氣、煤氣、一氧化碳等)進行保護加熱曾有一系列專利。1889~1890年英國人萊克獲得多種金屬光亮熱處理的專利。
二十世紀以來,金屬物理的發展和其它新技術的移植應用,使金屬熱處理工藝得到更大發展。一個顯著的進展是1901~1925年,在工業生產中應用轉筒爐進行氣體滲碳 ;30年代出現露點電位差計,使爐內氣氛的碳勢達到可控,以後又研究出用二氧化碳紅外儀、氧探頭等進一步控制爐內氣氛碳勢的方法;60年代,熱處理技術運用了等離子場的作用,發展了離子滲氮、滲碳工藝;激光、電子束技術的應用,又使金屬獲得了新的表面熱處理和化學熱處理方法。
二 金屬熱處理的工藝
熱處理工藝一般包括加熱、保溫、冷卻三個過程,有時只有加熱和冷卻兩個過程。這些過程互相銜接,不可間斷。
加熱是熱處理的重要步驟之一。金屬熱處理的加熱方法很多,最早是採用木炭和煤作為熱源,進而應用液體和氣體燃料。電的應用使加熱易於控制,且無環境污染。利用這些熱源可以直接加熱,也可以通過熔融的鹽或金屬,以至浮動粒子進行間接加熱。
金屬加熱時,工件暴露在空氣中,常常發生氧化、脫碳(即鋼鐵零件表面碳含量降低),這對於熱處理後零件的表面性能有很不利的影響。因而金屬通常應在可控氣氛或保護氣氛中、熔融鹽中和真空中加熱,也可用塗料或包裝方法進行保護加熱。
加熱溫度是熱處理工藝的重要工藝參數之一,選擇和控制加熱溫度 ,是保證熱處理質量的主要問題。加熱溫度隨被處理的金屬材料和熱處理的目的不同而異,但一般都是加熱到相變溫度以上,以獲得需要的組織。另外轉變需要一定的時間,因此當金屬工件表面達到要求的加熱溫度時,還須在此溫度保持一定時間,使內外溫度一致,使顯微組織轉變完全,這段時間稱為保溫時間。採用高能密度加熱和表面熱處理時,加熱速度極快,一般就沒有保溫時間或保溫時間很短,而化學熱處理的保溫時間往往較長。
冷卻也是熱處理工藝過程中不可缺少的步驟,冷卻方法因工藝不同而不同,主要是控製冷卻速度。一般退火的冷卻速度最慢,正火的冷卻速度較快,淬火的冷卻速度更快。但還因鋼種不同而有不同的要求,例如空硬鋼就可以用正火一樣的冷卻速度進行淬硬。
金屬熱處理工藝大體可分為整體熱處理、表面熱處理、局部熱處理和化學熱處理等。根據加熱介質、加熱溫度和冷卻方法的不同,每一大類又可區分為若干不同的熱處理工藝。同一種金屬採用不同的熱處理工藝,可獲得不同的組織,從而具有不同的性能。鋼鐵是工業上應用最廣的金屬,而且鋼鐵顯微組織也最為復雜,因此鋼鐵熱處理工藝種類繁多。
整體熱處理是對工件整體加熱,然後以適當的速度冷卻,以改變其整體力學性能的金屬熱處理工藝。鋼鐵整體熱處理大致有退火、正火、淬火和回火四種基本工藝。
退火是將工件加熱到適當溫度,根據材料和工件尺寸採用不同的保溫時間,然後進行緩慢冷卻,目的是使金屬內部組織達到或接近平衡狀態,獲得良好的工藝性能和使用性能,或者為進一步淬火作組織准備。正火是將工件加熱到適宜的溫度後在空氣中冷卻,正火的效果同退火相似,只是得到的組織更細,常用於改善材料的切削性能,也有時用於對一些要求不高的零件作為最終熱處理。
淬火是將工件加熱保溫後,在水、油或其它無機鹽、有機水溶液等淬冷介質中快速冷卻。淬火後鋼件變硬,但同時變脆。為了降低鋼件的脆性,將淬火後的鋼件在高於室溫而低於710℃的某一適當溫度進行長時間的保溫,再進行冷卻,這種工藝稱為回火。退火、正火、淬火、回火是整體熱處理中的「四把火」,其中的淬火與回火關系密切,常常配合使用,缺一不可。
「四把火」隨著加熱溫度和冷卻方式的不同,又演變出不同的熱處理工藝 。為了獲得一定的強度和韌性,把淬火和高溫回火結合起來的工藝,稱為調質。某些合金淬火形成過飽和固溶體後,將其置於室溫或稍高的適當溫度下保持較長時間,以提高合金的硬度、強度或電性磁性等。這樣的熱處理工藝稱為時效處理。把壓力加工形變與熱處理有效而緊密地結合起來進行,使工件獲得很好的強度、韌性配合的方法稱為形變熱處理;在負壓氣氛或真空中進行的熱處理稱為真空熱處理,它不僅能使工件不氧化,不脫碳,保持處理後工件表面光潔,提高工件的性能,還可以通入滲劑進行化學熱處理。
表面熱處理是只加熱工件表層,以改變其表層力學性能的金屬熱處理工藝。為了只加熱工件表層而不使過多的熱量傳入工件內部,使用的熱源須具有高的能量密度,即在單位面積的工件上給予較大的熱能,使工件表層或局部能短時或瞬時達到高溫。表面熱處理的主要方法,有激光熱處理、火焰淬火和感應加熱熱處理,常用的熱源有氧乙炔或氧丙烷等火焰、感應電流、激光和電子束等。
化學熱處理是通過改變工件表層化學成分、組織和性能的金屬熱處理工藝。化學熱處理與表面熱處理不同之處是後者改變了工件表層的化學成分。化學熱處理是將工件放在含碳、氮或其它合金元素的介質(氣體、液體、固體)中加熱,保溫較長時間,從而使工件表層滲入碳、氮、硼和鉻等元素。滲入元素後,有時還要進行其它熱處理工藝如淬火及回火。化學熱處理的主要方法有滲碳、滲氮、滲金屬、復合滲等。
熱處理是機械零件和工模具製造過程中的重要工序之一。大體來說,它可以保證和提高工件的各種性能 ,如耐磨、耐腐蝕等。還可以改善毛坯的組織和應力狀態,以利於進行各種冷、熱加工。
例如白口鑄鐵經過長時間退火處理可以獲得可鍛鑄鐵,提高塑性 ;齒輪採用正確的熱處理工藝,使用壽命可以比不經熱處理的齒輪成倍或幾十倍地提高;另外,價廉的碳鋼通過滲入某些合金元素就具有某些價昂的合金鋼性能,可以代替某些耐熱鋼、不銹鋼;工模具則幾乎全部需要經過熱處理方可使用。
三 鋼的分類
鋼是以鐵、碳為主要成分的合金,它的含碳量一般小於2.11% 。鋼是經濟建設中極為重要的金屬材料。鋼按化學成分分為碳素鋼(簡稱碳鋼)與合金鋼兩大類。碳鋼是由生鐵冶煉獲得的合金,除鐵、碳為其主要成分外,還含有少量的錳、硅、硫、磷等雜質。碳鋼具有一定的機械性能,又有良好的工藝性能,且價格低廉。因此,碳鋼獲得了廣泛的應用。但隨著現代工業與科學技術的迅速發展,碳鋼的性能已不能完全滿足需要,於是人們研製了各種合金鋼。合金鋼是在碳鋼基礎上,有目的地加入某些元素(稱為合金元素)而得到的多元合金。與碳鋼比,合金鋼的性能有顯著的提高,故應用日益廣泛。
由於鋼材品種繁多,為了便於生產、保管、選用與研究,必須對鋼材加以分類。按鋼材的用途、化學成分、質量的不同,可將鋼分為許多類:
(一). 按用途分類
按鋼材的用途可分為結構鋼、工具鋼、特殊性能鋼三大類。
1.結構鋼:
(1).用作各種機器零件的鋼。它包括滲碳鋼、調質鋼、彈簧鋼及滾動軸承鋼。
(2).用作工程結構的鋼。它包括碳素鋼中的甲、乙、特類鋼及普通低合金鋼。
2.工具鋼:用來製造各種工具的鋼。根據工具用途不同可分為刃具鋼、模具鋼與量具鋼。
3.特殊性能鋼:是具有特殊物理化學性能的鋼。可分為不銹鋼、耐熱鋼、耐磨鋼、磁鋼等。
(二). 按化學成分分類
按鋼材的化學成分可分為碳素鋼和合金鋼兩大類。
碳素鋼:按含碳量又可分為低碳鋼(含碳量≤0.25%);中碳鋼(0.25%<含碳量<0.6%);高碳鋼(含碳量≥0.6%)。
合金鋼:按合金元素含量又可分為低合金鋼(合金元素總含量≤5%);中合金鋼(合金元素總含量=5%--10%);高合金鋼(合金元素總含量>10%)。此外,根據鋼中所含主要合金元素種類不同,也可分為錳鋼、鉻鋼、鉻鎳鋼、鉻錳鈦鋼等。
(三). 按質量分類
按鋼材中有害雜質磷、硫的含量可分為普通鋼(含磷量≤0.045%、含硫量≤0.055%;或磷、硫含量均≤0.050%);優質鋼(磷、硫含量含硫量≤0.030%)。
此外,還有按冶煉爐的種類,將鋼分為平爐鋼(酸性平爐、鹼性平爐),空氣轉爐鋼(酸性轉爐、鹼性轉爐、氧氣頂吹轉爐鋼)與電爐鋼。按冶煉時脫氧程度,將鋼分為沸騰鋼(脫氧不完全),鎮靜鋼(脫氧比較完全)及半鎮靜鋼。
鋼廠在給鋼的產品命名時,往往將用途、成分、質量這三種分類方法結合起來。如將鋼稱為普通碳素結構鋼、優質碳素結構鋼、碳素工具鋼、高級優質碳素工具鋼、合金結構鋼、合金工具鋼等。均≤0.040%);高級優質鋼(含磷量≤0.035%、
四 金屬材料的機械性能
金屬材料的性能一般分為工藝性能和使用性能兩類。所謂工藝性能是指機械零件在加工製造過程中,金屬材料在所定的冷、熱加工條件下表現出來的性能。金屬材料工藝性能的好壞,決定了它在製造過程中加工成形的適應能力。由於加工條件不同,要求的工藝性能也就不同,如鑄造性能、可焊性、可鍛性、熱處理性能、切削加工性等。所謂使用性能是指機械零件在使用條件下,金屬材料表現出來的性能,它包括機械性能、物理性能、化學性能等。金屬材料使用性能的好壞,決定了它的使用范圍與使用壽命。
在機械製造業中,一般機械零件都是在常溫、常壓和非強烈腐蝕性介質中使用的,且在使用過程中各機械零件都將承受不同載荷的作用。金屬材料在載荷作用下抵抗破壞的性能,稱為機械性能(或稱為力學性能)。金屬材料的機械性能是零件的設計和選材時的主要依據。外載入荷性質不同(例如拉伸、壓縮、扭轉、沖擊、循環載荷等),對金屬材料要求的機械性能也將不同。常用的機械性能包括:強度、塑性、硬度、韌性、多次沖擊抗力和疲勞極限等。下面將分別討論各種機械性能。
1. 強度
強度是指金屬材料在靜荷作用下抵抗破壞(過量塑性變形或斷裂)的性能。由於載荷的作用方式有拉伸、壓縮、彎曲、剪切等形式,所以強度也分為抗拉強度、抗壓強度、抗彎強度、抗剪強度等。各種強度間常有一定的聯系,使用中一般較多以抗拉強度作為最基本的強度指標。
2. 塑性
塑性是指金屬材料在載荷作用下,產生塑性變形(永久變形)而不破壞的能力。
3. 硬度
硬度是衡量金屬材料軟硬程度的指標。目前生產中測定硬度方法最常用的是壓入硬度法,它是用一定幾何形狀的壓頭在一定載荷下壓入被測試的金屬材料表面,根據被壓入程度來測定其硬度值。
常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和維氏硬度(HV)等方法。
4. 疲勞
前面所討論的強度、塑性、硬度都是金屬在靜載荷作用下的機械性能指標。實際上,許多機器零件都是在循環載荷下工作的,在這種條件下零件會產生疲勞。
5. 沖擊韌性
以很大速度作用於機件上的載荷稱為沖擊載荷,金屬在沖擊載荷作用下抵抗破壞的能力叫做沖擊韌性。
五 退火--淬火--回火
(一).退火的種類
1. 完全退火和等溫退火
完全退火又稱重結晶退火,一般簡稱為退火,這種退火主要用於亞共析成分的各種碳鋼和合金鋼的鑄,鍛件及熱軋型材,有時也用於焊接結構。一般常作為一些不重要工件的最終熱處理,或作為某些工件的預先熱處理。
2. 球化退火
球化退火主要用於過共析的碳鋼及合金工具鋼(如製造刃具,量具,模具所用的鋼種)。其主要目的在於降低硬度,改善切削加工性,並為以後淬火作好准備。
3. 去應力退火
去應力退火又稱低溫退火(或高溫回火),這種退火主要用來消除鑄件,鍛件,焊接件,熱軋件,冷拉件等的殘余應力。如果這些應力不予消除,將會引起鋼件在一定時間以後,或在隨後的切削加工過程中產生變形或裂紋。
(二).淬火
為了提高硬度採取的方法,主要形式是通過加熱、保溫、速冷。最常用的冷卻介質是鹽水,水和油。鹽水淬火的工件,容易得到高的硬度和光潔的表面,不容易產生淬不硬的軟點,但卻易使工件變形嚴重,甚至發生開裂。而用油作淬火介質只適用於過冷奧氏體的穩定性比較大的一些合金鋼或小尺寸的碳鋼工件的淬火。
(三).回火
1. 降低脆性,消除或減少內應力,鋼件淬火後存在很大內應力和脆性,如不及時回火往往會使鋼件發生變形甚至開裂。
2. 獲得工件所要求的機械性能,工件經淬火後硬度高而脆性大,為了滿足各種工件的不同性能的要求,可以通過適當回火的配合來調整硬度,減小脆性,得到所需要的韌性,塑性。
3. 穩定工件尺寸
4. 對於退火難以軟化的某些合金鋼,在淬火(或正火)後常採用高溫回火,使鋼中碳化物適當聚集,將硬度降低,以利切削加工。
六 常用爐型的選擇
爐型應依據不同的工藝要求及工件的類型來決定
1.對於不能成批定型生產的,工件大小不相等的,種類較多的,要求工藝上具有通用性、
多用性的,可選用箱式爐。
2.加熱長軸類及長的絲桿,管子等工件時,可選用深井式電爐。
3.小批量的滲碳零件,可選用井式氣體滲碳爐。
4.對於大批量的汽車、拖拉機齒輪等零件的生產可選連續式滲碳生產線或箱式多用爐。
5.對沖壓件板材坯料的加熱大批量生產時,最好選用滾動爐,輥底爐。
6.對成批的定型零件,生產上可選用推桿式或傳送帶式電阻爐(推桿爐或鑄帶爐)
7.小型機械零件如:螺釘,螺母等可選用振底式爐或網帶式爐。
8.鋼球及滾柱熱處理可選用內螺旋的回轉管爐。
9.有色金屬錠坯在大批量生產時可用推桿式爐,而對有色金屬小零件及材料可用空氣循環加熱爐。